Skip to main content
Log in

Rhizoctonia communities in soybean fields and their relation with other microbes and nematode communities

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Soybean root rot, caused by Rhizoctonia solani, is one of the most serious soybean diseases in the North Central Region of the United States. There is no report of the relationship between Rhizoctonia root rot and soil physical and chemical properties, or microbial and nematode communities. A commercial soybean field with a long history of Rhizoctonia root rot was examined to explore this relationship. Results demonstrated that high disease incidence in sampled areas was positively correlated with high levels of nitrogen, phosphorus, manganese, populations of soil Rhizoctonia, thermophiles and fungi, root Rhizoctonia colonies, populations of lesion and stunt nematodes, and negatively correlated with high levels of calcium, magnesium, sodium, base saturation, and populations of Pseudomonas based on correlation analysis and canonical correspondence analysis (CCA). Cluster analysis showed that the communities of both Rhizoctonia and bacteria in sampled areas were separated based on healthy and diseased plants using denaturing gradient gel electrophoresis (DGGE); however, there was no clear separation for Fusarium, Pythium and Trichoderma communities in sampled areas based on healthy and diseased plants, indicating these species might not be directly associated with Rhizoctonia root rot. Moreover, the disease suppression seems to be more related to the quantity of soil beneficial microorganisms rather than specific species. In addition, DGGE is a reliable technique to characterize microbial communities and identify fungal and bacterial species in complex soil systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Anees, M., Edel-Hermann, V., & Steinberg, C. (2010a). Build up of patches caused by Rhizoctonia solani. Soil Biology and Biochemistry, 42, 1661–1672.

    Article  CAS  Google Scholar 

  • Anees, M., Tronsmo, A., Edel-Hermann, V., Gautheron, N., Faloya, V., & Steinberg, C. (2010b). Biotic changes in relation to local decrease in soil conduciveness to disease caused by Rhizoctonia solani. European Journal of Plant Pathology, 126, 29–41.

    Article  Google Scholar 

  • Barker, K. R., Townshend, J. L., Bird, G. W., Thomason, I. J., & Dickson, D. W. (1996). Determining nematode population responses to control agents. In K. D. Hickey (Ed.), Methods for evaluating pesticides for control of plant pathogens (pp. 283–296). St. Paul, MN: The American Phytopathological Society Press.

    Google Scholar 

  • Bradley, C. A., Hartman, G. L., Nelson, R. L., Mueller, D. S., & Pedersen, W. L. (2001). Response of ancestral soybean lines and commercial cultivars to Rhizoctonia root and hypocotyl rot. Plant Disease, 85, 1091–1095.

    Article  Google Scholar 

  • Byrd, D. W., Jr., Barker, K. R., Ferris, H., Nusbaum, C. J., Griffin, W. E., Small, R. H., & Stone, C. A. (1976). Two semi-automatic elutriators for extracting nematodes and certain fungi from soil. Journal of Nematology, 8, 206–212.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Croteau, G. A., & Zibilske, L. M. (1998). Influence of papermill processing residuals on saprophytic growth and disease caused by Rhizoctonia solani. Applied Soil Ecology, 10, 103–115.

    Article  Google Scholar 

  • Dorrance, A. E., Kleinhenz, M. D., McClure, S. A., & Tuttle, N. T. (2003). Temperature, moisture, and seed treatment effects on Rhizoctonia solani root rot of soybean. Plant Disease, 87, 533–538.

    Article  Google Scholar 

  • Garbeva, P., Postma, J., van Veen, J. A., & van Elsas, J. D. (2006). Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG 3. Environmental Microbiology, 8, 233–246.

    Article  PubMed  CAS  Google Scholar 

  • Geiser, D. M., Jimenez-Gascol, M. M., Kang, S. C., Makalowska, I., Narayanan Veeraraghavan, N., Ward, T., Zhang, N., Kuldau, G. A., & O’Donnell, K. (2004). FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 110, 473–479.

    Article  CAS  Google Scholar 

  • Gill, J. S., Sivasithamparam, K., & Smettem, K. R. J. (2001). Soil moisture affects disease severity and colonization of wheat roots by Rhizoctonia solani AG 8. Soil Biology and Biochemistry, 33, 1363–1370.

    Article  CAS  Google Scholar 

  • Grosch, R., Scherwinski, K., Lottmann, J., & Berg, G. (2006). Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological Research, 110, 1464–1474.

    Article  PubMed  CAS  Google Scholar 

  • Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117–153.

    Article  PubMed  CAS  Google Scholar 

  • Huber, D. M., & Watson, R. D. (1974). Nitrogen form and plant disease. Annual Review of Phytopathology, 12, 139–165.

    Article  PubMed  CAS  Google Scholar 

  • Jabaji-Hare, S., & Neate, S. M. (2005). Nonpathogenic binucleate Rhizoctonia spp. and benzothiadiazole protect cotton seedlings against Rhizoctonia damping-off and Alternaria leaf spot in cotton. Phytopathology, 95, 1030–1036.

    Article  PubMed  Google Scholar 

  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.

    Article  PubMed  CAS  Google Scholar 

  • Kinsbursky, R. S., & Weinhold, A. R. (1988). Influence of soil on inoculum density disease incidence relationships of Rhizoctonia solani. Phytopathology, 78, 127–130.

    Article  Google Scholar 

  • Lambert, K., & Bekal, S. (2002). Introduction to plant-parasitic nematodes. Plant Health Instructor. doi:10.1094/PHI-I-2002-1218-01.

    Google Scholar 

  • Liu, S. D., & Baker, R. (1980). Mechanism of biological control in soil suppressive to Rhizoctonia solani. Phytopathology, 70, 404–412.

    Article  Google Scholar 

  • Liu, B., & Louws, F. (2009). Communities of Pythium and Fusarium in soils from CT, NT and SC systems and their relationship with seed rot and damping-off of soybean. Phytopathology, 99, S74.

    Google Scholar 

  • Liu, B., Tu, C., Hu, S., Gumpertz, M., & Ristaino, J. B. (2007). Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of southern blight. Applied Soil Ecology, 37, 202–214.

    Article  Google Scholar 

  • Masago, H., Yoshikawa, M., Fukada, M., & Nakanish, H. (1977). Selective inhibition of Pythium sp. on a medium for direct isolation of Phytophthora spp. from soils and plants. Phytopathology, 67, 425–428.

    Article  CAS  Google Scholar 

  • Mehlich, A. (1973). Uniformity of soil test results as influenced by volume weight. Communication of Soil Science and Plant Annual, 4, 475–486.

    Article  CAS  Google Scholar 

  • Mehlich, A. (1984). Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416.

    Article  CAS  Google Scholar 

  • Mehlich, A., Bowling, S. S., & Hatfield, A. L. (1976). Buffer pH acidity in relation to nature of soil acidity and expression of lime requirement. Communications in Soil Science and Plant Analysis, 7, 253–263.

    Article  CAS  Google Scholar 

  • Nash, S. M., & Snyder, W. C. (1962). Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology, 52, 567–572.

    Google Scholar 

  • Neher, D. A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161–168.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oberwinkler, F., Riess, K., Bauer, R., Kirschner, R., & Sigisfredo, G. (2013). Taxonomic re-evaluation of the Ceratobasidium-Rhizoctonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycological Progress, 12, 763–776.

    Article  Google Scholar 

  • Ogoshi, A. (1996). Introduction - The genus Rhizoctonia. In B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 1–9). Dordrecht, NL: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiological Ecology, 62, 142–160.

    Article  CAS  Google Scholar 

  • Ryder, M. H., Yan, Z., Terrace, T. E., Rovira, A. D., Tang, W., & Correll, R. L. (1998). Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biology and Biochemistry, 31, 19–29.

    Article  Google Scholar 

  • Scherwinski, K., Grosch, R., & Berg, G. (2008). Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiological Ecology, 64, 106–116.

    Article  CAS  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication (5th ed.). Chicago: Urbana University of Illinois Press.

    Google Scholar 

  • Srihuttagum, M., & Sivasithamparam, K. (1991). The influence of fertilizers on root rot of field peas caused by Fusarium oxysporum, Pythium vexans and Rhizoctonia solani inoculated singly or in combination. Plant and Soil, 132, 21–27.

    Article  CAS  Google Scholar 

  • Tachibana, H. (1968). Rhizoctonia solani root rot epidemic of soybeans in central Iowa. Plant Disease Reporter, 52, 613–614.

    Google Scholar 

  • Thornton, C. R., & Gilligan, C. A. (1999). Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycological Research, 103, 43–448.

    Article  Google Scholar 

  • Wilson, P. S., Ketola, E. O., Ahvenniemi, P. M., Lehtonen, M. J., & Valkonen, J. P. T. (2008). Dynamics of soil-borne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathology, 57, 152–161.

    Google Scholar 

  • Wrather, J. A., Anderson, T. R., Arsyad, D. M., Gai, J., Ploper, L. D., Porta-Puglia, A., Ram, H. H., & Yorinori, J. T. (1997). Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Disease, 81, 107–110.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Nebraska Soybean Board. The authors thank the anonymous grower for providing soil and soybean plants from his farm. The authors also would like to thank Dr. Tamra Jackson and Dr. Loren Giesler for analyzing nematode populations in 2012, Mr. Bob Klein for assisting the collection of soil and plants, and Dr. Clive Bock for detailed editing of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Shen, W., Wei, H. et al. Rhizoctonia communities in soybean fields and their relation with other microbes and nematode communities. Eur J Plant Pathol 144, 671–686 (2016). https://doi.org/10.1007/s10658-015-0805-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0805-6

Keywords

Navigation