European Journal of Plant Pathology

, Volume 143, Issue 3, pp 515–526 | Cite as

Molecular response of resistant and susceptible apple genotypes to Erwinia amylovora infection



The leaves of apple cultivars resistant (cv. Free Redstar) and susceptible (cv. Idared) to fire blight were infiltrated with Erwinia amylovora. After 24 hours, differential gene expression was analysed using cDNA-AFLP technique. The expression pattern in the resistant cultivar, especially up-regulated genes encoding proteins involved in hypersensitive reaction and controlled cell death (BAX inhibitor and HIR protein), support the hypothesis that hypersensitive reaction is the main mechanism of resistance to fire blight in cv. Free Redstar. An important role in the resistance reaction is also played by proteins involved in signal transduction, especially serine/threonine kinase, which has been shown previously to confer resistance to fungal and bacterial pathogens in a number of plant species. A potential role in the defence against Erwinia amylovora was probably also β-1,3-glucanase (PR-2 protein), which was up-regulated in the resistant cultivar only. One of the proteins known to be involved in plant defense against pathogens – glutamate receptor – was up-regulated in the leaves of cv. Idared. Although the susceptible phenotype of this cultivar shows that expression of glutamate receptor only does not provide substantial resistance, it may be considered in gene pyramiding in apple breeding programmes.


Fire blight Gene expression Molecular mechanism of resistance Malus domestica Erwinia amylovora 


Compliance with ethical standards


This study was financed by the Polish Ministry of Agriculture and Rural Development.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aldwinckle, H. S., & Beer, S. V. (1978). Fire blight and its control. Horticultural Reviews, 1, 423–474.Google Scholar
  2. Afzal, A. J., Wood, A. J., & Lightfoot, D. A. (2008). Plant receptor-like serine threonine kinases: roles in signalling and plant defense. Molecular Plant-Microbe Interactions, 21, 507–517.CrossRefPubMedGoogle Scholar
  3. Baldo, A., Norelli, J. L., Farrell, R. E., Bassett, C. L., Aldwinckle, H. S., & Malnoy, M. (2010). Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biology, 10, 1.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Babu, R. M., Sajeena, A., Samundeeswari, A. V., Sreedhar, A., Vidhyasekeran, P., & Reddy, M. S. (2003). Induction of bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice by treatment with acibenzolar-S-methyl. Annals of Applied Biology, 143, 333–340.CrossRefGoogle Scholar
  5. Bachem, C., van der Hoeven, R., de Brujin, S., Vreugdenhil, D., Zabeau, M., & Visser, R. (1996). Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal, 9(5), 745–753.CrossRefPubMedGoogle Scholar
  6. Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., Samach, A., & Lifschitz, E. (2006). The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal, 46, 462–76.CrossRefPubMedGoogle Scholar
  7. Bonasera, J. M., Kim, J. F., & Beer, S. V. (2006). PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology, 6, 23.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bouche, N., & Fromm, H. (2004). GABA in plants: just a metabolite? Trends in Plant Science, 9(3), 110–115.CrossRefPubMedGoogle Scholar
  9. Brisset, M. N., Cesbron, S., Thomson, S. V., & Paulin, J.-P. (2000). Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight. European Journal of Plant Pathology, 106, 529–536.CrossRefGoogle Scholar
  10. Broggini, G. A. L., Wöhner, T., Fahrentrapp, J., Kost, T. D., Flachowsky, H., Peil, A., Hanke, M. V., Richter, K., Patocchi, A., & Gessler, C. (2014). Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnology Journal, 12, 728–733.CrossRefPubMedGoogle Scholar
  11. Cao, A., Xing, L., Wang, X., Yang, X., Wang, W., Sun, Y., Qian, C., Ni, J., Chen, Y., Liu, D., Wang, X., & Chen, P. (2011). Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences, 108, 7727–7732.CrossRefGoogle Scholar
  12. Carvalho, M. F., & Lazarowitz, S. G. (2004). Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for cabbage leaf curl Geminivirus infection and pathogenicity. Journal of Virology, 78, 11161–11171.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Carvalho, M. F., Turgeon, R., & Lazarowitz, S. G. (2006). The genimivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiology, 140, 1317–1330.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11, 113–116.CrossRefGoogle Scholar
  15. Chizzali, C., Gaid, M. M., Asma, K., Belkheir, A. K., Hänsch, R., Richter, K., Flachowsky, H., Peil, A., Hanke, M. V., Liu, B., & Beerhues, L. (2012). Differential expression of biphenyl synthase gene family members in fire-blight-infected apple. Plant Physiology, 158, 864–875.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Creelman, R. A., Bell, E., & Mullet, J. E. (1992). Involvement of a lipoxygenase-like enzyme in abscisic acid biosynthesis. Plant Physiology, 99, 1258–1260.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Creelman, R. A., & Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 355–381.CrossRefPubMedGoogle Scholar
  18. de Bernonville, T. D., Gaucher, M., Guyot, S., Durel, C. E., Dat, J. F., & Brisset, M. N. (2011). The constitutive phenolic composition of two Malus × domestica genotypes is not responsible for their contrasted susceptibilities to fire blight. Environmental and Experimental Botany, 74, 65–73.CrossRefGoogle Scholar
  19. Dezar, C. A., Gago, G. M., Gonzales, D. H., & Chan, R. L. (2005). Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Translational Research, 14, 429–440.Google Scholar
  20. Duan, Y., Guo, J., Shi, X., Guan, X., Liu, F., Bai, P., Huang, L., & Kang, Z. (2013). Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Plant Cell Reports, 32, 273–283.CrossRefPubMedGoogle Scholar
  21. Eichmann, R., Bischof, M., Weis, C., Shaw, J., Lacomme, C., Schweizer, P., Duchkov, D., Hensel, G., Kumlehn, J., & Hückelhoven, R. (2010). BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Molecular Plant-Microbe Interaction, 23, 1217–1227.CrossRefGoogle Scholar
  22. Fahrentrapp, J., Broggini, G. A. L., Kellerhals, M., Peil, A., Richter, K., Zini, E., & Gessler, C. (2013). A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR. Tree Genetics & Genomes, 9, 237–251.CrossRefGoogle Scholar
  23. Gong, Q., Li, P., Ma, S., Rupassara, S. I., & Bohnert, H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophile in comparison with its relative Arabidopsis thaliana. The Plant Journal, 44, 826–839.CrossRefPubMedGoogle Scholar
  24. Hardie, D. G. (1999). Plant protein serine/threonine kinases: classification and functions. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 97–131.CrossRefPubMedGoogle Scholar
  25. Heyens, K., Valcke, R., Dumont, D., Robben, J., & Noben, J.-P. (2006). Differential expression of proteins in apple following inoculation with Erwinia amylovora. Acta Horticulturae, 704, 489–494.Google Scholar
  26. Hückelhoven, R. (2004). BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis, 9, 299–307.CrossRefPubMedGoogle Scholar
  27. Iakimova, E. I., Michalczuk, L., & Woltering, E. J. (2005). Hypersensitive cell death in plants - its mechanisms and role in plant defence against pathogens. Journal of Fruit and Ornamental Plant Research, 13, 135–158.Google Scholar
  28. Iakimova, E. I., Sobiczewski, P., Michalczuk, L., Węgrzynowicz-Lesiak, E., Mikiciński, A., & Woltering, E. J. (2013). Morphological and biochemical characterization of Erwinia amylovora induced hypersensitive cell death in apple leaves. Plant Physiology and Biochemistry, 63, 292–305.CrossRefPubMedGoogle Scholar
  29. Imani, J., Baltruschat, H., Stein, E., Jia, G., Vogelsberg, J., Kogel, K. H., & Hückelhoven, R. (2006). Expression of barley BAX Inhibitor-1 in carrots confers resistance to Botrytis cinerea. Molecular Plant Pathology, 7, 279–284.CrossRefPubMedGoogle Scholar
  30. Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., Kapoor, S., Tyagi, A. K., & Khurana, J. P. (2007). F-box protein in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology, 143, 1467–1483.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M., & Kersters, K. (1996). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology, 142, 1881–1893.CrossRefPubMedGoogle Scholar
  32. Jensen, P. J., Halbrendt, N., Fazio, G., Makalowska, I., Altman, N., Praul, C., Maximova, S. N., Ngugi, H. K., Crassweller, R. M., Travis, J. W., & McNellis, T. W. (2012). Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics, 13, 9–25.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Jensen, P. J., Makalowska, I., Altman, N., Fazio, G., Praul, C., Maximova, S. N., Crassweller, R. M., Travis, J. W., & McNellis, T. W. (2010). Rootstock-regulated gene expression patterns in apple tree scions. Tree Genetics & Genomes, 6, 57–72.CrossRefGoogle Scholar
  34. Kang, S., Kim, H. B., Lee, H., Choi, J. Y., Heu, S., Oh, C. J., Kwon, S. I., & An, C. S. (2006). Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. Molecular Cell, 21, 418–427.Google Scholar
  35. Kawai-Yamada, M., Hori, Z., Ogawa, T., Ihara-Ohori, Y., Tamura, K., Nagano, M., Ishikawa, T., & Uchimiya, H. (2009). Loss of calmodulin binding to Bax inhibitor-1 affects Pseudomonas-mediated hypersensitive response-associated cell death in Arabidopsis thaliana. Journal of Biological Chemistry, 284, 27998–28003.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kellerhals, M., Franck, L., Baumgartner, I. O., Patocch, A., & Frey, J. E. (2011). Breeding for fire blight resistance in apple. Acta Horticulturae, 896, 385–389.Google Scholar
  37. Kellerhals, M., Baumgartner, I. O., Leumann, L., Frey, J. E., & Patocch, A. (2013). Progress in pyramiding desease resistances in apple breeding. Acta Horticulturae, 976, 487–491.Google Scholar
  38. Khan, M. A., Duffy, B., Gessler, C., & Patocchi, A. (2006). QTL mapping of fire blight resistance in apple. Molecular Breeding, 17, 299–306.CrossRefGoogle Scholar
  39. Kipreos, E. T., & Pagano, M. (2000). The F-box protein family. Genome Biology, 1(5), 3002.1–3002.7. reviews.CrossRefGoogle Scholar
  40. Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L. L., & Keller, B. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.CrossRefPubMedGoogle Scholar
  41. Kouzarides, T. (2000). Acetylation: a regulatory modification to rival phosphorylation? EMBO Journal, 19, 1176–1179.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Kwak, K. J., Kim, J. Y., Kim, J. O., & Kang, H. (2007). Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress. Plant and Cell Physiology, 48, 221–231.CrossRefPubMedGoogle Scholar
  43. Lespinasse, Y., Guérif, P., & Durel, C. E. (2011). Strategies for fire blight resistance breeding in pear (Pyrus communis); 30 years of experience. Acta Horticulturae, 909, 51–58.Google Scholar
  44. Leubner-Metzger, G., & Meins, F. (1999). Functions and regulation of plant ß-1,3-glucanases (PR-2). In S. K. Datta & S. Muthukrishnan (Eds.), Pathogenesis-related proteins in plants (pp. 49–73). Boca Raton, Florida, USA: CRC Press LLC.Google Scholar
  45. Malnoy, M., Jin, Q., Borejsza-Wysocka, E. E., He, S. Y., & Aldwinckle, H. S. (2007). Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Molecular Plant-Microbe Interaction, 20, 1568–1580.CrossRefGoogle Scholar
  46. Malnoy, M., Martens, S., Norelli, J. L., Barny, M. A., Sundin, G. W., Smits, T. H. M., & Duffy, B. (2012). Fire blight: applied genomic insights of the pathogen and host. Annual Review of Phytopathology, 50, 475–494.CrossRefPubMedGoogle Scholar
  47. Manzoor, H., Kelloniemi, J., Chiltz, A., Wendehenne, D., Pugin, A., Poinssot, B., & Garcia-Brugger, A. (2013). Involvement of the glutamate receptor AtGLR3.3 in plant defense signalling and resistance to Hyaloperonospora arabidopsidis. The Plant Journal, 76, 466–480.CrossRefPubMedGoogle Scholar
  48. Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, U., Müller-Röber, B., & Schulz, B. (2002). Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta, 214, 345–355.CrossRefPubMedGoogle Scholar
  49. Marrs, K. A. (1996). The functions and regulation of glutathione S-transferases in plant. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 127–158.CrossRefPubMedGoogle Scholar
  50. Mauch, F., Mauch-Mani, B., & Boller, T. (1988). Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and beta-1,3-glucanase. Plant Physiology, 88, 936–942.PubMedCentralCrossRefPubMedGoogle Scholar
  51. McGarry, R. C., Barron, Y. D., Carvalho, M. F., Hill, J. E., Gold, D., Cheung, E., Kraus, W. L., & Lazarowitz, S. G. (2003). A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell, 15, 1605–1618.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Milčevičová, R., Gosch, C., Halbwirth, H., Stich, K., Hanke, M., Peil, A., Flachowsky, H., Rozhon, W., Jonak, C., Oufir, M., Hausman, J. F., Matušiková, I., Fluch, S., & Wilhelm, E. (2010). Erwinia amylovora-induced defense mechanism of two apple species that differ in susceptibility to fire blight. Plant Science, 179, 60–67.CrossRefGoogle Scholar
  53. Money, T., Reader, S., Qu, I., Dunford, R., & Moore, G. (1995). AFLP based mRNA fingerprinting. Nucleic Acids Research, 24, 2616–2617.CrossRefGoogle Scholar
  54. Norelli, J. L. (2004). Fire blight. In R. M. Goodman (Ed.), Encyclopedia of plant and crop science (pp. 443–447). NY: Marcel Dekker, Inc.Google Scholar
  55. Norelli, J. L., Farrell, R. E., Bassett, C. L., Baldo, A. M., Lalli, D. A., Aldwinckle, H. S., & Wisniewski, M. E. (2009). Rapid transcriptional response of apple to fore blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics & Genomes, 5, 27–40.CrossRefGoogle Scholar
  56. Park, D. H., Mirabella, R., Bronstein, P. A., Preston, G. M., Haring, M. A., Lim, C. K., Collmer, A., & Schuurink, R. C. (2010). Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. The Plant Journal, 64, 318–330.CrossRefPubMedGoogle Scholar
  57. Parravicini, G., Gessler, C., Denance, C., Lassere-Zuber, P., Vergne, E., Brisset, M. N., Patocchi, A., Durel, C. E., & Brioggini, G. A. L. (2011). Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Molecular Plant Pathology, 12, 493–505.CrossRefPubMedGoogle Scholar
  58. Peng, H. Z., Lin, E. P., Sang, Q. L., Yao, S., Jin, Q. Y., Hua, X. Q., & Zhu, M. Y. (2007). Molecular cloning, expression analyses and primary evolution studies of REV- and TB1-like genes in bamboo. Tree Physiology, 27, 1273–1281.CrossRefPubMedGoogle Scholar
  59. Pontais, I., de Bernonville, T. D., Paulin, J.-P., & Brisset, M.-N. (2008). A microarray approach to analyse transcriptional changes in apple after infection by Ervinia amylovora. Acta Horticulturae, 793, 187–188.Google Scholar
  60. Price, M. B., Jelesko, J., & Okumoto, S. (2012). Glutamate receptor homologs in plants: functions and evolutionary origins. Frontiers in Plant Science, 3, 235.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Rivera, E., Codina, J. C., Olea, F., de Vincente, A., & Perez-Garcia, A. (2002). Differential expression of β-1,3-glucanase in susceptible and resistant melon cultivars in response to infection by Sphaerotheca fusca. Physiological and Molecular Plant Pathology, 61, 257–265.CrossRefGoogle Scholar
  62. Robson, F., Costa, M. M., Hepworth, S. R., Vizir, I., Piñeiro, M., Reeves, P. H., Putterill, J., & Coupland, G. (2001). Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal, 28, 619–631.CrossRefPubMedGoogle Scholar
  63. Roxas, V. P., Smith, R. K., Allen, E. R., & Allen, R. D. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology, 15, 988–991.CrossRefPubMedGoogle Scholar
  64. Ryugo, K., Okuse, I., & Fujii, Y. (1990). Correlation between fire blight resistance and phenolic levels in pears. Acta Horticulturae, 273, 335–338.CrossRefGoogle Scholar
  65. Sarowar, S., Zhao, Y., Soria-Guerra, R. E., Ali, S., Zheng, D., Wang, D., & Korban, S. S. (2011). Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. Journal of Experimental Botany, 62, 4851–4861.PubMedCentralCrossRefPubMedGoogle Scholar
  66. Siedow, J. N. (1991). Plant lipoxygenase: structure and function. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 145–188.CrossRefGoogle Scholar
  67. Sobiczewski, P., Zurawicz, E., Berczynski, S., & Lewandowski, M. (2004). Terminal shoot susceptibility of new polish apple cultigens to fire blight. Folia Horticulturae, 16, 149–157.Google Scholar
  68. Sobiczewski, P., Żurawicz, E., Berczyński, S., Mikiciński, A., & Lewandowski, M. (2008). The importance of the type of Erwinia amylovora inoculum in screening of apple genotypes susceptibility to fire blight. Journal of Fruit and Ornamental Plant Researct, 16, 305–313.Google Scholar
  69. Sobiczewski, P., Peil, A., Mikicinski, A., Richter, K., Lewandowski, M., Zurawicz, E., & Kellerhals, M. (2015). Susceptibility of apple genotypes from European genetic resources to fire blight (Erwinia amylovora). European Journal of Plant Pathology, 141, 51–62.CrossRefGoogle Scholar
  70. Stein, M., Dittgen, J., Sánchez-Rodríguez, C., Hou, B. H., Molina, A., Schulze-Lefert, P., Lipka, V., & Somerville, S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 18, 731–746.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Swiderski, M. R., & Innes, R. W. (2001). The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. The Plant Journal, 26, 101–112.CrossRefPubMedGoogle Scholar
  72. Taura, T., Siomi, M. C., & Siomi, H. (2005). The molecular mechanisms of mRNA export. In T. Tzfira & V. Citovsky (Eds.), Nuclear import and export in plants and animals (pp. 161–174). USA: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  73. van der Zwet, T., & Beer, S. V. (1995). Fire blight – its nature, prevention and control. USDA Washington, Agriculture Information Bulletins, 631.Google Scholar
  74. van der Zwet, T., & Keil, H. L. (1979). Fire blight, a bacterial disease of rosaceous plants. Washington, DC: USDA Agriculture Handbook. No. 510.Google Scholar
  75. Venisse, J. S., Gullner, G., & Brisset, M. N. (2001). Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiology, 125, 2164–2172.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Venisse, J. S., Malnoy, M., Faize, M., Paulin, J.-P., & Brisset, M. N. (2002). Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interactions, 15, 1204–1212.CrossRefPubMedGoogle Scholar
  77. Wang, X., Tang, C., Huang, X., Li, F., Chen, X., Zhang, G., Sun, Y., Han, D., & Kang, Z. (2012). Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. Journal of Experimental Botany, 63, 4571–4584.CrossRefPubMedGoogle Scholar
  78. Xu, L., Liu, Z.-Y., Zhang, K., Lu, Q., Liang, J., & Zhang, X.-Y. (2013). Characterization of the Pinus massoniana transcriptional response to Bursaphelenchus xylophilus infection using suppression subtractive hybridization. International Journal of Molecular Sciences, 14, 11356–11375.PubMedCentralCrossRefPubMedGoogle Scholar
  79. Yang, Y., Fu, Z., Su, Y., Zhang, X., Li, G., Guo, J., Que, Y., & Xu, L. (2014). A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. Scientific Reports. doi: 10.1038/srep07090.Google Scholar
  80. Zhou, J., Loh, Y.-T., Bressan, R. A., & Martin, G. A. (1995). The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell, 83, 925–935.CrossRefPubMedGoogle Scholar
  81. Zhou, L., Cheung, M.-Y., Li, M.-W., Fu, Y., Sun, Z., Sun, S.-M., & Lam, H.-M. (2010). Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. BMC Plant Biology, 10, 290–299.PubMedCentralCrossRefPubMedGoogle Scholar
  82. Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S., & Mueller, M. J. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiology, 160, 365–378.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Research Institute of HorticultureSkierniewicePoland

Personalised recommendations