European Journal of Plant Pathology

, Volume 143, Issue 3, pp 527–541 | Cite as

Virulence differences among Sclerotinia sclerotiorum isolates determines host cotyledon resistance responses in Brassicaceae genotypes



Differences in Sclerotinia rot (SR) disease severity, caused by two categorized pathotypes and one more recent isolate of S. sclerotiorum and measured in terms of cotyledon lesion diameter, were studied across diverse Brassicaceae hosts to characterize host response and pathogen virulence. There were significant differences (P ≤0.001) between genotypes, isolates and a significant genotype x isolate interaction. The mean diameter of cotyledon lesions ranged from 5 mm in the most resistant genotypes (e.g., Brassica juncea Ringot I and Seeta) to ≥ 13.6 mm in the most susceptible genotypes (e.g., B. tournefortii Wild turnip #1 and #2, Sisymbrium irio London rocket Wild #1 and #2, and B. nigra 4381). Responses, in at least one experiment for some B. juncea (e.g., Seeta, Ringot I) and Raphanus sativus (e.g., Colonel) genotypes, were generally highly resistant irrespective of the isolate used, making them ideal sources of resistance to exploit for developing new varieties with more effective resistance to SR across multiple pathotypes of this pathogen. In contrast, some other genotypes showed significant isolate dependency, with high levels of resistance against one isolate (e.g., B. napus Charlton against the WW4 isolate; B. napus Oscar against the ‘Cabbage’ isolate) but quite susceptible to other isolates (e.g., B. napus Charlton against the ‘Cabbage’ and MBRS1 isolates; B. napus Oscar against the WW4 isolate). These findings highlight the value from using pathotypes of different physiological specialization in screening programs to identify host resistance that is durable across multiple pathotypes. Distinct host resistance symptom types were reported for the first time on some genotypes against isolate WW4; including a distinct yellow halo observed around lesions on B. napus RQ001, indicative of leaf senescence involved in programmed cell death (PCD); a distinct dark brown margin observed around lesions on R. sativus, indicative of a hypersensitive response (HR); and the HR ‘flecking’ on Sinapis alba Concerta and B. juncea Seeta. That WW4 was the most pathogenic isolate for genotypes such as B. juncea Hetianyoucai and B. napus Oscar that showed high level resistance to the ‘Cabbage’ isolate and intermediate resistance to MBRS-1, dispels previously held views that WW4 was a largely avirulent pathotype of little consequence. Rather, isolate WW4 offers unique opportunities to investigate HR and PCD host resistance responses to S. sclerotiorum in Brassicaceae.


Sclerotinia sclerotiorum Sclerotinia rot Brassicaceae Crucifer Raphanus Brassica Radish Oilseed rape Mustard Host resistance 



Xintian Ge is the recipient of an International Postgraduate Research Scholarship, The University of Western Australia, a scholarship from Kunming Floral World Bio-Tech Co. Ltd., Kunming, Peoples Republic of China, and ‘top-up’ funding by the Institute of Agriculture at the University of Western Australia. We appreciate the operational funding support for this research provided by the Australia Research Council and the Department of Agriculture and Food Western Australia (Project LP100200113, ‘Factors responsible for host resistance to the pathogen Sclerotinia sclerotiorum for developing effective disease management in vegetable Brassicas’); and the Australian Centre for International Agricultural Research and the Grains Research and Development Corporation, Canberra, along with the School of Plant Biology, The University of Western Australia, for additional operational funding this work. We gratefully acknowledge the provision of half the salary of Martin Barbetti during the early part of these studies by the Department of Agriculture and Food Western Australia. Exceptional technical support is acknowledged from Mr Robert Creasy and Mr Bill Piasini in the UWA Plant Growth Facilities.


  1. Barbetti, M. J., & Khangura. R., (2000). Fungal diseases of canola in Western Australia. Bulletin 4406, Agriculture Western Australia. 15pp.Google Scholar
  2. Barbetti, M. J., Banga, S. K., Fu, T. D., Li, Y. C., Singh, D., Liu, S. Y., Ge, X. T., & Banga, S. S. (2014). Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica, 197, 47–59.CrossRefGoogle Scholar
  3. Buchwaldt. L., Li, R., Hegedus, D.D., & Rimmer, S.R., (2005). Pathogenesis of Sclerotinia sclerotiorum in relation to screening for resistance. Proceedings of the 13th International Sclerotinia WS, Monterey, CA, USA. 22.Google Scholar
  4. Clarkson, J. P., Clewes, E., & Whipps, J. M. (2008). Diversity of Sclerotinia sclerotiorum from agricultural crops and meadow buttercup in the UK. Journal of Plant Pathology, 90, S2.Google Scholar
  5. Clarkson, J. P., Coventry, E., Kitchen, J., & Whipps, J. M. (2013). Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathology, 62, 309–324.CrossRefGoogle Scholar
  6. Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24, 383–409.CrossRefGoogle Scholar
  7. Davis, K. R., Darvill, A. G., Albersheim, P., & Dell, A. (1986). Host pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalact-uronic acid lyase are elicitors of phytoalexin in soybean. Plant Physiology, 80, 568–577.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Delourme, R., Barbetti, M. J., Snowdon, R., Zhao, J., & Manzanares-Dauleux, M. (2011). Genetics and Genomics of Resistance. In D. Edwards, J. Batley, I. A. P. Parkin, & C. Kole (Eds.), Genetics, Genomics and Breeding of Oilseed Brassicas (pp. 276–318). USA: Science Publishers, CRC Press.Google Scholar
  9. Ekins, M. G., Aitken, E. A. B., & Goulter, K. C. (2007). Aggressiveness among isolates of Sclerotinia sclerotiorum from sunflower. Australasian Plant Pathology, 36, 580–586.CrossRefGoogle Scholar
  10. Garg, H., Sivasithamparam, K., Banga, S. S., & Barbetti, M. J. (2008). Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australasian Plant Pathology, 37, 106–111.CrossRefGoogle Scholar
  11. Garg, H., Kohn, L. M., Andrew, M., Li, H., Sivasithamparam, K., & Barbetti, M. J. (2010a). Pathogenicity of morphologically different isolates of Sclerotinia sclerotiorum with Brassica napus and B. juncea genotypes. European Journal of Plant Pathology, 126, 305–315.CrossRefGoogle Scholar
  12. Garg, H., Atri, C., Sandhu, P. S., Kaur, B., Benton, M., Banga, S. K., Singh, H., Singh, C., Barbetti, M. J., & Banga, S. S. (2010b). High level of resistance of Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crops Research, 117, 51–58.CrossRefGoogle Scholar
  13. Ge, X., Li, Y. P., Wan, Z. J., You, M. P., Finnegan, P. M., Banga, S. S., Sandhu, P. S., Garg, H., Salisbury, P. A., & Barbetti, M. J. (2012). Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crop Research, 127, 248–258.CrossRefGoogle Scholar
  14. Goodwin, S. B., Allard, R. W., & Webster, R. (1990). A nomenclature for Rhynchosporium secalis pathotypes. Phytopathology, 80, 1330–1336.CrossRefGoogle Scholar
  15. Greenberg, J. T. (1997). Programmed Cell Death in plant-pathogen interactions. Annual Review of Plant Physiological and Plant Molecular Biology, 48, 525–545.CrossRefGoogle Scholar
  16. Harel, A., Bercovich, S., & Yarden, O. (2006). Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia Sclerotiorum in an oxalic acid-independent manner. Molecular Plant-Microbe Interactions, 19, 682–693.CrossRefPubMedGoogle Scholar
  17. Jurick, W. M., & Rollins, J. A. (2007). Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genetics and Biology, 44, 521–530.CrossRefPubMedGoogle Scholar
  18. Kim, W. G., & Gho, W. D. (2003). Occurrence of Sclerotinia rot in cruciferous crops caused by Sclerotinia spp. Plant Pathology Journal, 19, 69–74.CrossRefGoogle Scholar
  19. Kohn, L. M., Carbone, I., & Anderson, J. B. (1990). Mycelial interactions in Sclerotinia sclerotiorum. Experimental Mycology, 14, 255–267.CrossRefGoogle Scholar
  20. Kohn, L. M., Stasovski, E., Carbone, I., Royer, J., & Anderson, J. B. (1991). Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology, 81, 480–485.CrossRefGoogle Scholar
  21. Laemmlen, F., (2001) Damping-off diseases. Publ. No. 8041. University of California, Davis.Google Scholar
  22. Li, C. X., Li, H., Sivasithamparam, K., Fu, T. D., Li, Y. C., Liu, S. Y., & Barbetti, M. J. (2006). Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Australian Journal of Agricultural Research, 57, 1131–1135.CrossRefGoogle Scholar
  23. Li, C. X., Li, H., Siddique, A. B., Sivasithamparam, K., Salisbury, P., Banga, S. S., Shashi Banga, Chattopadhyay, C., Kumar, A., Singh, R., Singh, D., Agnihotri, A., Liu, S. Y., Li, Y. C., Tu, J., Fu, T. D., Wang, Y. F., & Barbetti, M. J. (2007). The importance of the type and time of inoculation and assessment in the determination of resistance in Brassica napus and B. juncea to Sclerotinia sclerotiorum. Australian Journal of Agricultural Research, 58, 1198–1203.CrossRefGoogle Scholar
  24. Li, C. X., Liu, S. Y., Sivasithamparam, K., & Barbetti, M. J. (2009). New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm screened under Western Australian conditions. Australasian Plant Pathology, 38, 149–152.CrossRefGoogle Scholar
  25. McCartney, H. A., Cacey, M. E., Li, Q., & Heran, A., (2000). Airborne ascospores concentration and the infection of oilseed rape and sunflower by S. sclerotiorum. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia.Google Scholar
  26. Nelson, B. D., Helms, T. C., & Kural, I. (1991). Effect of temperature and pathogens isolates on laboratory screening of soybean for resistance to Sclerotinia sclerotiorum. Canadian Journal of Plant Science, 71, 347–352.CrossRefGoogle Scholar
  27. Otto-Hanson, L., Steadman, J. R., Higgins, R., & Eskridge, K. M. (2011). Variation in Sclerotinia sclerotiorum bean isolates from multisite resistance screening locations. Plant Disease, 95, 1370–1377.CrossRefGoogle Scholar
  28. Pedras, M. S. C., & Ahiahonu, P. W. K. (2004). Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum. Journal of Chemical Ecology, 30, 2163–2179.CrossRefPubMedGoogle Scholar
  29. Prajapati, C. R., Shukla, H. P., & Pandey, R. (2005). Screening of Dolichos bean cultivars/germplasm against Sclerotinia sclerotiorum. Annals of Plant Protection Science, 13, 259–261.Google Scholar
  30. Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology, 69, 875–880.CrossRefGoogle Scholar
  31. Rahmanpour, S., Backhouse, D., & Nonhebel, H. M. (2010). Reaction of glucosinolate- myrosinase defence system in Brassica plants to pathogenicity factor of Sclerotinia sclerotiorum. European Journal of Plant Pathology, 128, 429–433.CrossRefGoogle Scholar
  32. Saharan, G. S., & Mehta, N., (2008). Sclerotinia Diseases of Crop plants: Biology, Ecology and Disease Management. Springer. ISBN 978-1-4020-8407-2.Google Scholar
  33. Sexton, A. C., Whitten, A. R., & Howlett, B. J. (2006). Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Genome, 49, 1408–1415.CrossRefPubMedGoogle Scholar
  34. Singh, D., Singh, R., Salisbury, P., & Barbetti, M. J., (2011). Genetic diversity in Australian, Indian and Chinese oilseed Brassica germplasm against sclerotinia-rot resistance. Proceedings of the 13th International Rapeseed Congress, June 5 – 9, 2011, Prague, Czech Republic. p. 665–669.Google Scholar
  35. Sutton, D. C., & Deverall, B. J. (1983). Studies on infection of bean (Phaseolus vulgaris) and soybean (Glycine max) by ascospores of Sclerotinia sclerotiorum. Plant Pathology, 32, 251–261.CrossRefGoogle Scholar
  36. Sylvester-Bradley, R., & Makepeace, R. J. (1984). A code for stages of development in oilseed rape (Brassica napus L.). Aspects of Applied Biology, 6, 399–419.Google Scholar
  37. Uloth, M., You, M. P., Finnegan, P. M., Banga, S. S., Banga, S. K., Yi, H., Salisbury, P., & Barbetti, M. J. (2013). New sources of resistance to Sclerotinia sclerotiorum for crucifer crops. Field Crops Research, 154, 40–52.CrossRefGoogle Scholar
  38. Uloth, M., You, M. P., Finnegan, P. M., Banga, S. S., Yi, H., & Barbetti, M. J. (2014). Seedling resistance to Sclerotinia sclerotiorum as expressed across diverse cruciferous species. Plant Disease, 98, 184–190.CrossRefGoogle Scholar
  39. Uloth, M., Clode, P. L., You, M. P., Cawthray, G., & Barbetti, M. J., (2015). Temperature adaptation in Sclerotinia sclerotiorum affects its ability to infect Brassica carinata. Plant Pathology (Online 8th January 2015 at doi:  10.1111/ppa.12338).
  40. Uloth, M., Clode, P. L., You, M. P., & Barbetti, M. J. (2015b). Calcium oxalate crystals: an integral component of the Sclerotinia sclerotiorum/Brassica carinata pathosystem. PloS One, 10(3), e0122362. doi: 10.1371/journal.pone.0122362.PubMedCentralCrossRefPubMedGoogle Scholar
  41. van Doorn, W. G., & Woltering, E. J. (2004). Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany, 55, 2147–2153.CrossRefPubMedGoogle Scholar
  42. Yen, C. H., & Yang, C. H. (1998). Evidence for programmed cell death during leaf senescence in plants. Plant Cell Physiology, 39, 922–927.CrossRefGoogle Scholar
  43. Young, C. S., Clarkson, J. P., Smith, J. A., Watling, M., Phelps, K., & Whipps, J. M. (2004). Environmental conditions influencing Sclerotinia sclerotiorum infection and disease development in lettuce. Plant Pathology, 53, 387–397.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Xin Tian Ge
    • 1
  • Ming Pei You
    • 1
    • 2
  • Martin J. Barbetti
    • 1
    • 2
  1. 1.School of Plant Biology, Faculty of ScienceThe University of Western AustraliaCrawleyAustralia
  2. 2.The UWA Institute of Agriculture, Faculty of ScienceThe University of Western AustraliaCrawleyAustralia

Personalised recommendations