European Journal of Plant Pathology

, Volume 143, Issue 2, pp 331–341 | Cite as

Activity-guided separation of Chromolaena odorata leaf extract reveals fractions with rice disease-reducing properties

  • Julián Rodríguez-Algaba
  • Jens Christian Sørensen
  • Hilmer Sørensen
  • Nguyễn Đắc Khoa
  • David B. Collinge
  • Hans Jørgen Lyngs Jørgensen


An aqueous extract from the plant Chromolaena odorata [syn Eupatorium odoratum], Eupatorieae, Asteraceae, protected rice against sheath blight by induced resistance. As an initial step towards identification of the specific disease-reducing compounds, leaves from C. odorata were extracted with water and methanol and the extracts separated using a group separation system followed by analysis using capillary electrophoresis. The fractions from the extracts were tested in vitro and in planta using Bipolaris oryzae (cause of brown spot of rice) to test for their potential to reduce disease severity. Activity-guided separation of the C. odorata extracts indicated that compounds with activity could, at least partly, be isolated on a weakly acidic cation exchange column. Further purification yielded fractions with disease reducing effects of up to 72 % at 15 days after inoculation. Activity was found both in methanol and water extracts, indicating that the bioactive compound(s) are hydrophilic, low molecular weight compounds. The disease-reducing fractions did not display any direct antimicrobial effects, but data indicate that they protect the plants by induced resistance as evidenced from increased activity of β-1,3-glucanase.


Antimicrobial effect Bipolaris oryzae Chromolaena odorata Disease reduction Induced resistance Oryza sativa 



Cation-exchanger A column


Anion-exchanger C column


Eluted anion-exchanger C column


Non-charged fraction




Days after inoculation


Standard error of the mean



This project was funded by the Danish International Development Agency (Danida), Denmark, through the project 104.DAN.8.L.727 ‘Integrated disease and nutrient management in rice production systems’.


  1. Akinmoladun, A. C., Ibukun, E. O., & Dan-Ologe, I. A. (2007). Phytochemical constituents and antioxidant properties of extracts from the leaves of Chromolaena odorata. Scientific Research and Essay, 2, 191–194.Google Scholar
  2. Apori, S. O., Long, R. J., Castro, F. B., & Ørskov, E. R. (2000). Chemical composition and nutritive value of leaves and stems of tropical weed Chromolaena odorata. Grass and Forage Science, 55, 77–81.CrossRefGoogle Scholar
  3. Barua, R. N., Sharma, R. P., Thyagarajan, G., & Hertz, W. (1978). Flavonoids of Chromolaena odorata. Phytochemistry, 17, 1807–1808.CrossRefGoogle Scholar
  4. Bhat, S. V., Nagasampagi, B. A., & Meenakshi, S. (2009). Natural Products, Chemistry and Applications. Oxford: Alpha Science International Ltd.Google Scholar
  5. Biller, A., Boppré, M., Witte, L., & Hartmann, T. (1994). Pyrrolizidine alkaloids in Chromolaena odorata. Chemical and chemoecological aspects. Phytochemistry, 3, 615–619.CrossRefGoogle Scholar
  6. Collett, D. (1991). Modelling Binary Data. London: Chapman & Hall.Google Scholar
  7. Datta, K., & Datta, S. K. (2009). Biotechnological approaches to disease resistance in rice. In S. K. Datta (Ed.), Rice Improvement in the Genomics Era (pp. 179–205). Boca Raton: CRC Press.Google Scholar
  8. De Rodríguez, J. D., Hernández-Castillo, D., Angulo-Sánchez, J. L., Rodríguez-García, R., Villarreal Quintanilla, J. A., & Lira-Saldivar, R. H. (2007). Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. Industrial Crops and Products, 25, 111–116.CrossRefGoogle Scholar
  9. EFSA (European Food Safety Authority). (2007). Opinion of the scientific panel on contaminants in the food chain on a request from the European Commission related to pyrrolizidine alkaloids as undesirable substances in animal feeds. The EFSA Journal, 447, 1–51.Google Scholar
  10. El-Mougy, N. S., & Abdel-Kader, M. M. (2008). Long-term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens. Australasian Plant Pathology, 37, 464–471.CrossRefGoogle Scholar
  11. Ham, K. S., Kauffmann, S., Albersheim, P., & Darvill, A. G. (1991). Host-pathogen interactions XXXIX. A soybean pathogenesis-related protein with β-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Molecular Plant-Microbe Interactions, 4, 545–552.CrossRefGoogle Scholar
  12. Harish, S., Saravanakumar, D., Radjacommare, R., Ebenezar, E. G., & Seetharaman, K. (2007). Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl, 53, 555–567.CrossRefGoogle Scholar
  13. Hung, T. M., Cuong, T. D., Dang, N. H., Zhu, S., Long, P. Q., Komatsu, K., & Min, B. S. (2011). Flavonoid glycosides from Chromolaena odorata leaves and their in vitro cytotoxic activity. Chemical and Pharmaceutical Bulletin, 59, 129–131.Google Scholar
  14. Irobi, O. N. (1997). Antibiotic properties of ethanol extract of Chromolaena odorata (Asteriaceae). International Journal of Pharmacognosy, 35, 111–115.CrossRefGoogle Scholar
  15. Joosten, L., & van Veen, J. A. (2011). Defensive properties of pyrrolizidine alkaloids against microorganisms. Phytochemistry Reviews, 10, 127–136.Google Scholar
  16. Joshi, R. K. (2013). Chemical composition of the essential oils of aerial parts and flowers of Chromolaena odorata (L.) R. M. King & H. Rob. from Western Ghats region of North West Karnataka, India. Journal of Essential Oil Bearing Plants, 16, 71–75.CrossRefGoogle Scholar
  17. Kagale, S., Marimuthu, T., Thayumanavan, B., Nandakumar, R., & Samiyappan, R. (2004). Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. Physiological and Molecular Plant Pathology, 65, 91–100.CrossRefGoogle Scholar
  18. Kini, K. R., Vasanthi, N. S., & Shetty, H. S. (2000). Induction of β-1,3-glucanase in seedlings of pearl millet in response to infection by Sclerospora graminicola. European Journal of Plant Pathology, 106, 267–274.CrossRefGoogle Scholar
  19. Khoa, N. D. (2010). Control of Sheath Blight and Other Rice Diseases by Induced Resistance Using an Extract of the Plant Chromolaena odorata. PhD-Dissertation, Department of Plant Biology and Biotechnology, University of Copenhagen, Denmark.Google Scholar
  20. Khoa, N. D., Thuy, P. T. H., Thuy, T. T. T., Collinge, D. B., & Jørgensen, H. J. L. (2011). Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases. Phytopathology, 101, 231–240.CrossRefPubMedGoogle Scholar
  21. Kloepper, J. W., Tuzun, S., & Kuć, J. (1992). Proposed definitions related to induced disease resistance. Biocontrol Science and Technology, 2, 349–351.CrossRefGoogle Scholar
  22. Koba, K., Nénonéné, A. Y., Catherine, G., Raynaud, C., Chaumont, J.-P., Sanda, K., & Laurence, N. (2011). Chemical composition and cytotoxic activity of essential oil of Chromolaena odorata L. growing in Togo. Journal of Essential Oil Bearing Plants, 14, 423–429.CrossRefGoogle Scholar
  23. Kossouoh, C., Moudachirou, M., Adjakidje, V., Chalchat, J.-C., Figuérédo, G., & Chalard, P. (2011). Volatile constituents of Chromolaena odorata (L.) RM King & H. Rob. leaves from Benin. Journal of Essential Oil Bearing Plants, 14, 224–228.CrossRefGoogle Scholar
  24. Naidoo, K. K., Coopoosamy, R. M., & Naidoo, G. (2011). Screening of Chromolaeana odorata (L.) King and Robinson for antibacterial and antifungal properties. Journal of Medicinal Plants Research, 5, 4859–4862.Google Scholar
  25. Ngozi, I. M., Jude, I. C., & Catherine, I. C. (2009). Chemical profile of Chromolaena odorata L. (King and Robinson) leaves. Pakistan Journal of Nutrition, 8, 521–524.CrossRefGoogle Scholar
  26. Nguyen, V. N., Nguyen, D. M. C., Seo, D. J., Park, R. D., & Jung, W. J. (2009). Antimycotic activities of cinnamon-derived compounds against Rhizoctonia solani in vitro. BioControl, 54, 697–707.CrossRefGoogle Scholar
  27. Petersen, I. L., Andersen, K. E., Sørensen, J. C., & Sørensen, H. (2006). Determination of shikimate in crude plant extracts by micellar electrokinetic capillary chromatography. Journal of Chromatography A., 1130, 253–258.CrossRefPubMedGoogle Scholar
  28. Pisutthanan, N., Liawruangrath, B., Liawruangrath, S., & Bremner, J. B. (2006). A new flavonoid from Chromolaena odorata. Natural Product Research, 20, 1192–1198.CrossRefPubMedGoogle Scholar
  29. Sehajpal, A., Arora, S., & Kaur, P. (2009). Evaluation of plant extracts against Rhizoctonia solani causing sheath blight of rice. The Journal of Plant Protection Sciences, 1, 25–30.Google Scholar
  30. Shetty, N. P., Jensen, J. D., Knudsen, A., Finnie, C., Geshi, N., Blennow, A., Collinge, D. B., & Jørgensen, H. J. L. (2009). Effects of β-1,3-glucan from Septoria tritici on structural defence responses in wheat. Journal of Experimental Botany, 60, 4287–4300.CrossRefPubMedGoogle Scholar
  31. Shetty, R., Fretté, X., Jensen, B., Shetty, N. P., Jensen, J. D., Jørgensen, H. J. L., Newman, M.-A., & Christensen, L. P. (2011). Silicon-induced changes in antifungal phenolic acids, flavonoids and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiology, 157, 2194–2205.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Singh, A., Rohila, R., Savary, S., Willocquet, L., & Singh, U. S. (2003). Infection process in sheath blight of rice caused by Rhizoctonia solani. Indian Phytopathology, 56, 434–438.Google Scholar
  33. Skadhauge, B., Thomsen, K. K., & von Wettstein, D. (1997). The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas, 126, 147–160.CrossRefGoogle Scholar
  34. Suksamrarn, A., Chotipong, A., Suavansri, T., Boongird, S., Timsulksai, P., Vimuttilpong, S., & Chuaynugul, A. (2004). Antimycobacterial activity and cytotoxicity of flavonoids from the flowers of Chromolaena odorata. Archives of Pharmacal Research, 27, 507–511.CrossRefPubMedGoogle Scholar
  35. Sørensen, H., Sørensen, J., Bjergegaard, C., & Michaelsen, S. (1999). Ion-exchange chromatography. In P. S. Belton (Ed.), Chromatography and Capillary Electrophoresis in Food Analysis (pp. 152–167). Cambridge: The Royal Society of Chemistry.Google Scholar
  36. Thoden, T. C., Boppré, M., & Hallmann, J. (2007). Pyrrolizidine alkaloids of Chromolaena odorata act as nematicidal agents and reduce infection of lettuce roots by Meloidogyne incognita. Nematology, 9, 343–349.CrossRefGoogle Scholar
  37. Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7, 581–591.CrossRefPubMedGoogle Scholar
  38. Trigo, J. R. (2011). Effects of pyrrolizidine alkaloids through different trophic levels. Phytochemistry Reviews, 10, 83–98.Google Scholar
  39. van Loon, L. C., Rep, M., & Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.CrossRefPubMedGoogle Scholar
  40. Webster, R. K., & Gunnell, P. S. (1992). Compendium of Rice Diseases. USA: The American Phytopathological Society.Google Scholar
  41. Wollenweber, E., Dörr, M., & Muniappan, R. (1995). Exudate flavonoids in a tropical weed, Chromolaena odorata (L.) R. M. King et H. Robinson. Biochemical Systematics and Ecology, 23, 873–874.CrossRefGoogle Scholar
  42. Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D., & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193, 770–778.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Julián Rodríguez-Algaba
    • 1
    • 3
  • Jens Christian Sørensen
    • 2
  • Hilmer Sørensen
    • 2
  • Nguyễn Đắc Khoa
    • 1
    • 4
  • David B. Collinge
    • 1
  • Hans Jørgen Lyngs Jørgensen
    • 1
  1. 1.Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.Department of AgroecologyAarhus UniversitySlagelseDenmark
  4. 4.Department of Molecular Biotechnology, Institute of Biotechnology, Research and DevelopmentCan Tho UniversityCan Tho CityVietnam

Personalised recommendations