Advertisement

European Journal of Plant Pathology

, Volume 143, Issue 1, pp 133–149 | Cite as

Structural characterization and localization analysis of the root-knot nematode Meloidogyne javanica fatty acid and retinol binding protein (Mj-FAR-1)

  • Ionit Iberkleid
  • Adva Yeheskel
  • Eduard Belausov
  • B. Chinnapandi
  • N. Fitoussi
  • Sigal Brown Miyara
Article

Abstract

Plant-parasitic nematodes are extremely destructive pathogens with a cosmopolitan distribution and a host range that affects most crops. They are characterized by distinct parasitic lifestyles, e.g., as sedentary or migratory endo- or ectoparasites, resulting in high losses in yield and revenue. Possessing limited lipid metabolism, they produce one or two structurally unique classes of small α-helix-rich fatty acid and retinol binding (FAR) proteins that have no counterpart in other organisms. We investigated the sequence and structural characteristics of the FAR protein of the root-knot nematode Meloidogyne javanica (Mj-FAR-1) in comparison to other studied FAR proteins. Protein sequence analyses enabled phylogenetic clustering according to trophic groups and lifestyles. Bioinformatics analysis of the FAR protein sequences revealed ten likely core amino acids representing the trophic-group clustering. Clear modifications of four of these amino acids from less reactive (nonpolar, with aliphatic R group) to more reactive (positively or negatively charged R groups, or uncharged polar R groups) might distinguish free-living from parasitic nematode species. Structural predictions of the mature Mj-FAR-1 protein and its ligand-binding pockets, suggest that adaptation toward parasitism is associated with increased reactivity of the second pocket residues, as well as those on the protein surface. Subcellular localization of Mj-FAR-1 with or without its signal peptide was determined by Agrobacterium infiltration of N-terminal mCherry-tagged protein into Nicotiana benthamiana leaves. Intact Mj-FAR-1 with its signal peptide was predominantly localized along the plasma membrane surrounding plant cells while removing the signal peptide resulted in additional localization within the cell nucleus. The nuclear localization agreed with in-silico analysis of the Mj-FAR-1 sequence and sheds new light on its function in manipulating the plant response. Our study provides the first basic structural information and subcellular localization of the plant-parasitic Mj-FAR-1 protein.

Keywords

Fatty acid and retinol binding (FAR) protein Plant-parasitic nematode Root-knot nematode Meloiodgyne javanica Parasitism Effector protein 

Abbreviations

Mj

Meloidogyne javanica

FAR

Fatty acid and retinol binding (protein)

Notes

Acknowledgments

The authors would like to thank Dr. Einat Sadot for the plasmids, and Cathy Dayan for the infiltration method and plant material.

References

  1. Abu-Abied, M., Avisar, D., Belausov, E., Holdengreber, V., Kam, Z., & Sadot, E. (2009). Identification of an Arabidopsis unknown small membrane protein targeted to mitochondria, chloroplasts, and peroxisomes. Protoplasma, 236(1–4), 3–12.PubMedCrossRefGoogle Scholar
  2. Barrett, J. (1981). Biochemistry of parasitic Helminths. Baltimore: University Park Press.Google Scholar
  3. Basavaraju, S. V., Zhan, B., Kennedy, M. W., Liu, Y., Hawdon, J., & Hotez, P. J. (2003). Ac-FAR-1, a 20 kDa fatty acid- and retinol-binding protein secreted by adult Ancylostoma caninum hookworms: gene transcription pattern, ligand binding properties and structural characterisation. Molecular and Biochemical Parasitology, 126(1), 63–71.PubMedCrossRefGoogle Scholar
  4. Bath, J. L., Ferris A. E. (2013) The Potential Role of Binding proteinsin human parasitic infections: An in-depth look at the novel family of nematodes specific fatty acid and retinol binding proteins, www.cell.cinvestav.mx/downloads/Binding_Proteins-Ed._InTech-2012.pdf l
  5. Bath, J. L., Robinson, M., Kennedy, M. W., Agbasi, C., Linz, L., Maetzold, E., et al. (2009). Identification of a secreted fatty acid and retinol-binding protein (Hp-FAR-1) from Heligmosomoides polygyrus. Journal of Nematology, 41(3), 228–233.PubMedCentralPubMedGoogle Scholar
  6. Benkert, P., Kunzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510–W514.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bradley, J. E., Nirmalan, N., Klager, S. L., Faulkner, H., & Kennedy, M. W. (2001). River blindness: a role for parasite retinoid-binding proteins in the generation of pathology? Trends in Parasitology, 17(10), 471–475.PubMedCrossRefGoogle Scholar
  8. Brandt, B. W., Feenstra, K. A., & Heringa, J. (2010). Multi-Harmony: detecting functional specificity from sequence alignment. Nucleic Acids Research, 38(Web Server issue), W35–W40.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chakraborty, A., & Chakrabarti, S. (2014). A survey on prediction of specificity-determining sites in proteins. Briefings in Bioinformatics.Google Scholar
  10. Cheng, X., Xiang, Y., Xie, H., Xu, C. L., Xie, T. F., Zhang, C., et al. (2013). Molecular characterization and functions of fatty acid and retinoid binding protein gene (Ab-far-1) in Aphelenchoides besseyi. PLoS One, 8(6), e66011.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Costa, J. C., Lilley, C. J., & Urwin, P. E. (2007). Caenorhabditis elegans as a model for plant-parasitic nematodes. Nematology, 9, 3–16.CrossRefGoogle Scholar
  12. Davies, K. G., & Curtis, R. H. (2011). Cuticle surface coat of plant-parasitic nematodes. Annual Review of Phytopathology, 49, 135–156.PubMedCrossRefGoogle Scholar
  13. Deslandes, L., & Rivas, S. (2011). The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signaling & Behavior, 6(1), 42–48.CrossRefGoogle Scholar
  14. Elling, A. A., Davis, E. L., Hussey, R. S., & Baum, T. J. (2007). Active uptake of cyst nematode parasitism proteins into the plant cell nucleus. International Journal for Parasitology, 37(11), 1269–1279.PubMedCrossRefGoogle Scholar
  15. Fairfax, K. C., Vermeire, J. J., Harrison, L. M., Bungiro, R. D., Grant, W., Husain, S. Z., et al. (2009). Characterization of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. International Journal of Parasitology, 39(14), 1561–1571.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Garofalo, A., Klager, S. L., Rowlinson, M. C., Nirmalan, N., Klion, A., Allen, J. E., et al. (2002). The FAR proteins of filarial nematodes: secretion, glycosylation and lipid binding characteristics. Molecular and Biochemical Parasitology, 122(2), 161–170.PubMedCrossRefGoogle Scholar
  17. Garofalo, A., Kennedy, M. W., & Bradley, J. E. (2003). The FAR proteins of parasitic nematodes: their possible involvement in the pathogenesis of infection and the use of Caenorhabditis elegans as a model system to evaluate their function. Medical Microbiology and Immunology, 192, 47–52.PubMedGoogle Scholar
  18. Glasner, M. E., Gerlt, J. A., & Babbitt, P. C. (2006). Evolution of enzyme superfamilies. Current Opinion in Chemical Biology, 10(5), 492–497.PubMedCrossRefGoogle Scholar
  19. Gorlich, D., & Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annual Review of Cell and Developmental Biology, 15, 607–660.PubMedCrossRefGoogle Scholar
  20. Guharoy, M., & Chakrabarti, P. (2010). Conserved residue clusters at protein-protein interfaces and their use in binding site identification. BMC Bioinformatics, 11, 286–302.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hok, S., Attard, A., & Keller, H. (2010). Getting the most from the host: how pathogens force plants to cooperate in disease. Molecular Plant-Microbe Interactions, 23(10), 1253–1259.PubMedCrossRefGoogle Scholar
  22. Horton, P., Park, K.-J., Obayashi, T., & Nakai, K. (2006). Protein subcellular localization prediction with WoLF PSORT. In Proc. Asian Pacific Bioinformatics Conf., Taipeh (pp. 39–48).Google Scholar
  23. Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., et al. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35, W585–W587.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Iberkleid, I., Vieira, P., de Almeida Engler, J., Firester, K., Spiegel, Y., & Horowitz, S. B. (2013). Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS One, 8(5), e64586.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jaouannet, M., & Rosso, M. N. (2013). Effectors of root sedentary nematodes target diverse plant cell compartments to manipulate plant functions and promote infection. Plant Signal Behav, 8(9).Google Scholar
  26. Jaouannet, M., Perfus-Barbeoch, L., Deleury, E., Magliano, M., Engler, G., Vieira, P., et al. (2012). A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei. New Phytologist, 194(4), 924–931.PubMedCrossRefGoogle Scholar
  27. Jones, J. T., Kumar, A., Pylypenko, L. A., Thirugnanasambandam, A., Castelli, L., Chapman, S., et al. (2009). Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Molecular Plant Pathology, 10(6), 815–828.PubMedCrossRefGoogle Scholar
  28. Jordanova, R., Groves, M. R., Kostova, E., Woltersdorf, C., Liebau, E., & Tucker, P. A. (2009). Fatty acid- and retinoid-binding proteins have distinct binding pockets for the two types of cargo. The Journal of Biological Chemistry, 284(51), 35818–35826.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Katoh, K., & Toh, H. (2010). Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics, 26(15), 1899–1900.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kennedy, M. W. (2000). The polyprotein lipid binding proteins of nematodes. Biochimica et Biophysica Acta, 1476(2), 149–164.PubMedCrossRefGoogle Scholar
  31. Kennedy, M. W., Garside, L. H., Goodrick, L. E., McDermott, L., Brass, A., Price, N. C., et al. (1997). The Ov20 protein of the parasitic nematode Onchocerca volvulus. A structurally novel class of small helix-rich retinol-binding proteins. Journal of Biological Chemistry, 272(47), 29442–29448.PubMedCrossRefGoogle Scholar
  32. Kimura, M. (1979). The neutral theory of molecular evolution. Scientific American, 241(5), 98–100. 102, 108 passim.PubMedCrossRefGoogle Scholar
  33. Lim, R. Y., & Fahrenkrog, B. (2006). The nuclear pore complex up close. Current Opinion in Cell Biology, 18(3), 342–347.PubMedCrossRefGoogle Scholar
  34. Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., DeWeese-Scott, C., Geer, L. Y., Gwadz, M., et al. (2005). CDD: a conserved domain database for protein classification. Nucleic Acids Research, 33(Database issue), D192–D196.PubMedCentralPubMedCrossRefGoogle Scholar
  35. McDermott, L., Cooper, A., & Kennedy, M. W. (1999). Novel classes of fatty acid and retinol binding protein from nematodes. Molecular and Cellular Biochemistry, 192(1–2), 69–75.PubMedCrossRefGoogle Scholar
  36. Mei, B., Kennedy, M. W., Beauchamp, J., Komuniecki, P. R., & Komuniecki, R. (1997). Secretion of a novel, developmentally regulated fatty acid-binding protein into the perivitelline fluid of the parasitic nematode, Ascaris suum. Journal of Biological Chemistry, 272(15), 9933–9941.PubMedCrossRefGoogle Scholar
  37. Modha, J., Kusel, J. R., & Kennedy, M. W. (1995). A role for second messengers in the control of activation-associated modification of the surface of Trichinella spiralis infective larvae. Molecular and Biochemical Parasitology, 72(1–2), 141–148.PubMedCrossRefGoogle Scholar
  38. Nakai, K., & Horton, P. (1999). PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in Biochemical Sciences, 24(1), 34–36.PubMedCrossRefGoogle Scholar
  39. Nelson, B. K., Cai, X., & Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant Journal, 51(6), 1126–1136.PubMedCrossRefGoogle Scholar
  40. Nicchitta, C. V. (2002). Signal sequence function in the mammalian endoplasmatic reticulum: A biological perspective. In S. A. Simon, & T. J. McIntosh (Eds.), Current topics in membranes, Peptide-lipid interactions (Vol. 52): Academic Press.Google Scholar
  41. Nirmalan, N., Cordeiro, N. J., Klager, S. L., Bradley, J. E., & Allen, J. E. (1999). Comparative analysis of glycosylated and nonglycosylated filarial homologues of the 20-kilodalton retinol binding protein from Onchocerca volvulus (Ov20). Infection and Immunity, 67(12), 6329–6334.PubMedCentralPubMedGoogle Scholar
  42. Peng, H., Gao, B. L., Kong, L. A., Yu, Q., Huang, W. K., He, X. F., et al. (2013). Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis. PLoS One, 8(7), e69579.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Philipp, M., & Rumjaneck, F. D. (1984). Antigenic and dynamic properties of helminth surface structures. Molecular and Biochemical Parasitology, 10(3), 245–268.PubMedCrossRefGoogle Scholar
  44. Prior, A., Jones, J. T., Blok, V. C., Beauchamp, J., McDermott, L., Cooper, A., et al. (2001). A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochemistry Journal, 356(Pt 2), 387–394.CrossRefGoogle Scholar
  45. Proudfoot, L., Kusel, J. R., Smith, H. V., Harnett, W., Worms, M. J., & Kennedy, M. W. (1993). Rapid changes in the surface of parasitic nematodes during transition from pre- to post-parasitic forms. Parasitology, 107(Pt 1), 107–117.PubMedCrossRefGoogle Scholar
  46. Rivas, S. (2012). Nuclear dynamics during plant innate immunity. Plant Physiology, 158(1), 87–94.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Saghir, N., Conde, P. J., Brophy, P. M., & Barrett, J. (2001). Biochemical characterisation of a hydrophobic ligand binding protein from the tapeworm Hymenolepis diminuta. International Journal for Parasitology, 31(7), 653–660.PubMedCrossRefGoogle Scholar
  48. Stoffler, D., Fahrenkrog, B., & Aebi, U. (1999). The nuclear pore complex: from molecular architecture to functional dynamics. Current Opinion in Cell Biology, 11(3), 391–401.PubMedCrossRefGoogle Scholar
  49. Tree, T. I., Gillespie, A. J., Shepley, K. J., Blaxter, M. L., Tuan, R. S., & Bradley, J. E. (1995). Characterisation of an immunodominant glycoprotein antigen of Onchocerca volvulus with homologues in other filarial nematodes and Caenorhabditis elegans. Molecular and Biochemical Parasitology, 69(2), 185–195.PubMedCrossRefGoogle Scholar
  50. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Wymore, T., & Brooks, C. L., III. (2012). From molecular Phylogenetics to quantum chemistry: discovering enzyme design principles through computation. Computational and Structural Biotechnology Journal, 2(3), e201209018.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Ionit Iberkleid
    • 1
    • 2
  • Adva Yeheskel
    • 3
  • Eduard Belausov
    • 4
  • B. Chinnapandi
    • 1
  • N. Fitoussi
    • 1
    • 2
  • Sigal Brown Miyara
    • 1
  1. 1.Department of Entomology, Nematology and Chemistry Units, the Volcani CenterAgricultural Research Organization (ARO)Bet-DaganIsrael
  2. 2.Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food & Environmentthe Hebrew University of JerusalemRehovotIsrael
  3. 3.The Bioinformatics Unit, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
  4. 4.Department of Plant Sciences, the Volcani CenterAgricultural Research Organization (ARO)Bet DaganIsrael

Personalised recommendations