Advertisement

European Journal of Plant Pathology

, Volume 142, Issue 4, pp 855–864 | Cite as

Evaluation of acibenzolar-S-methyl-induced resistance against iris yellow spot tospovirus

  • D. Tripathi
  • H. R. Pappu
Article

Abstract

Acibenzolar-S-Methyl (ASM) is a functional analog of salicylic acid (SA) that activates local and systemic acquired resistance (SAR) responses in plants against a wide variety of pathogens. Iris yellow spot virus (IYSV) is an economically important tospovirus of onion that causes severe economic losses to both bulb and seed crops. IYSV resistant onion cultivars are not available to date and there are limited control options. To explore the possibility of utilizing SAR as a control option, we first used two different hosts of IYSV, Datura stramonium and Nicotiana benthamiana, to study the ability of ASM in triggering SAR against IYSV infection. Quantitative descriptors based on both symptom expression and relative levels of IYSV nucleoprotein and viral small RNA were developed and used to determine the SAR in ASM- and buffer-treated plants. A significant reduction in virus levels in ASM-treated plants was noticed by ELISA and PCR. The level of SAR response was also assessed by measuring the IYSV lesion size and number on the inoculated leaves of ASM-treated plants. ASM-treated plants showed reduced symptoms compared to buffer-treated plants. This study could be useful in potentially developing novel SAR-based options for virus management.

Keywords

Chemical inducers Disease management Disease resistance Tospoviruses Systemic acquired resistance 

Notes

Acknowledgments

We thank Mrs. Nomatter Chingandu for her help with real-time PCR. Tripathi was supported by a research assistantship from the WSU Graduate Program in Molecular Plant Sciences. PPNS No. 0672, Department of Plant Pathology, College of Agricultural, Human and Natural Resource Sciences, Agricultural Research Center, Project # WNPO 0545, Washington State University, Pullman, WA 99164-6430, USA. This research was funded in part by the USDA-NIFA Specialty Crops Research Initiative SREP grant (2008-51180-04875).

References

  1. Anfoka, G. H. (2000). Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum). Mill cv. Vollendung) to Cucumber mosaic virus. Crop Protection, 19(6), 401–405. doi: 10.1016/S0261-2194(00)00031-4.CrossRefGoogle Scholar
  2. Bag, S., & Pappu, H. R. (2009). Symptomatology of Iris yellow spot virus in selected indicator hosts. Plant Health Progress. doi: 10.1094/PHP-2009-0824-01-BR.Google Scholar
  3. Bag, S., Schwartz, H. F., Cramer, C. S., Havey, M. J., & Pappu, H. R. (2015). Iris yellow spot virus (Tospovirus: Bunyaviridae): from obscurity to research priority. Molecular Plant Pathology, 16, 224–37.PubMedCrossRefGoogle Scholar
  4. Benhamou, N., & Belanger, R. R. (1998). Induction of systemic resistance to Pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response. Plant Journal, 14(1), 13–21. doi: 10.1046/j.1365-313X.1998.00088.x.PubMedCrossRefGoogle Scholar
  5. Boateng, C. O., & Schwartz, H. F. (2013). Temporal and localized distribution of iris yellow spot virus within tissues of infected onion plants. Southwestern Entomologist, 38(2), 183–200. doi: 10.3958/059.038.0204.CrossRefGoogle Scholar
  6. Campbell, H. L., & Wilson, M. (1999). Evaluation of actigard (CGA-245704) for the control of bacterial spot of peach. (Abstr.). Phytopathology, 89, S11.CrossRefGoogle Scholar
  7. Chingandu, N. (2012). Investigating virus-host and virus-virus interactions using Iris yellow spot virus and Tomato spotted wilt virus (Tospovirus; Bunyaviridae) as model systems. Unpublished master’s thesis. Washington State University, Pullman, WA, USA.Google Scholar
  8. Chingandu, N., Druffel, K., Schroeder, K., Okubara, P., & Pappu, H. R. (2012). Quantitative molecular assays for investigating virus-host and virus-virus interactions using negative-stranded RNA viruses as a model system. Phytopathology, 102, S6–8.Google Scholar
  9. Cole, D. L. (1999). The efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance, against bacterial and fungal diseases of tobacco. Crop Protection, 18(4), 267–273. doi: 10.1016/S0261-2194(99)00026-5.CrossRefGoogle Scholar
  10. Cortes, I., Livieratos, I. C., Derks, A., Peters, D., & Kormelink, R. (1998). Molecular and serological characterization of Iris yellow spot virus, a new and distinct tospovirus species. Phytopathology, 88(12), 1276–1282. doi: 10.1094/phyto.1998.88.12.1276.PubMedCrossRefGoogle Scholar
  11. Cortes-Barco, A. M., Goodwin, P. H., & Hsiang, T. (2010). Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathology, 59(4), 643–653. doi: 10.1111/j.1365-3059.2010.02283.x.CrossRefGoogle Scholar
  12. Cramer, C., Singh, N., Kamal, N., & Pappu, H. R. (2014). Screening onion plant introduction accessions for tolerance to onion thrips and Iris yellow spot virus. HortScience, 49(10), 1253–1261.Google Scholar
  13. Csinos, A. S., Pappu, H. R., McPherson, R. M., & Stephenson, M. G. (2001). Management of Tomato spotted wilt virus in flue-cured tobacco with acibenzolar-S-methyl and imidacloprid. Plant Disease, 85(3), 292–296. doi: 10.1094/PDIS.2001.85.3.292.CrossRefGoogle Scholar
  14. Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209. doi: 10.1146/annurev.phyto.42.040803.140421.PubMedCrossRefGoogle Scholar
  15. Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., et al. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant Journal, 10(1), 61–70. doi: 10.1046/j.1365-313X.1996.10010061.x.CrossRefGoogle Scholar
  16. Gent, D. H., Schwartz, H. F., & Khosla, R. (2004). Managing Iris yellow spot virus of onion with cultural practices, host genotype, and novel chemical treatments. (Abstr.). Phytopathology, 94, S34.CrossRefGoogle Scholar
  17. Gent, D. H., du Toit, L. J., Fichtner, S. F., Mohan, S. K., Pappu, H. R., & Schwartz, H. F. (2006). Iris yellow spot virus: an emerging threat to onion bulb and seed production. Plant Disease, 90(12), 1468–1480. doi: 10.1094/PD-90-1468.CrossRefGoogle Scholar
  18. Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell Online, 8(4), 629–643. doi: 10.1105/tpc.8.4.629.CrossRefGoogle Scholar
  19. Hall, J. M., Mohan, K., Knott, E. A., & Moyer, J. W. (1993). Tospoviruses associated with scape blight of onion (Allium cepa) seed crops in Idaho. Plant Disease, 77, 952.CrossRefGoogle Scholar
  20. Hammond-Kosack, K. E., & Jones, J. D. (1996). Resistance gene-dependent plant defense responses. Plant Cell, 8(10), 1773–1791.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hobbs, H. A., Black, L. L., Johnson, R. R., & Valverde, R. A. (1994). Difference in reactions among Tomato spotted wilt virus isolates to three resistant Capsicum chinense lines. Plant Disease, 78, 1220.CrossRefGoogle Scholar
  22. Hoffmann, K., Qiu, W. P., & Moyer, J. W. (2001). Overcoming host- and pathogen-mediated resistance in tomato and tobacco maps to the M RNA of Tomato spotted wilt virus. Molecular Plant Microbe Interaction, 14(2), 242–249. doi: 10.1094/mpmi.2001.14.2.242.CrossRefGoogle Scholar
  23. Huang, Y. W., Hu, C. C., Liou, M. R., Chang, B. Y., Tsai, C. H., Meng, M., et al. (2012). Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLoS Pathogens, 8(5), e1002726. doi: 10.1371/journal.ppat.1002726.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ishii, H., Tomita, Y., Horio, T., Narusaka, Y., Nakazawa, Y., Nishimura, K., et al. (1999). Induced resistance of acibenzolar-S-methyl (CGA 245704) to cucumber and Japanese pear diseases. European Journal of Plant Pathology, 105(1), 77–85. doi: 10.1023/A:1008637828624.CrossRefGoogle Scholar
  25. Jensen, B. D., Olumide Latunde-Dada, A., Hudson, D., & Lucas, J. A. (1998). Protection of Brassica seedlings against downy mildew and damping-off by seed treatment with CGA 245704, an activator of systemic acquired resistance. Pesticide Science, 52(1), 63–69. doi: 10.1002/(SICI)1096-9063(199801)52:1<63::AID-PS660>3.0.CO;2-2.CrossRefGoogle Scholar
  26. Kritzman, A., Lampal, M., Raccah, B., & Gera, A. (2001). Distribution and transmission of Iris yellow spot virus. Plant Disease, 85, 838–842.CrossRefGoogle Scholar
  27. Latham, L. J., & Jones, R. A. C. (1998). Selection of resistance breaking strains of Tomato spotted wilt tospovirus. Annals of Applied Biology, 133(3), 385–402. doi: 10.1111/j.1744-7348.1998.tb05838.x.CrossRefGoogle Scholar
  28. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., et al. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal, 10(1), 71–82.PubMedCrossRefGoogle Scholar
  29. Mandal, B., Mandal, S., Csinos, A. S., Martinez, N., Culbreath, A. K., & Pappu, H. R. (2008). Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology, 98(2), 196–204. doi: 10.1094/phyto-98-2-0196.PubMedCrossRefGoogle Scholar
  30. Momol, M. T., Olson, S. M., Funderburk, J. E., Stavisky, J., & Marois, J. J. (2004). Integrated Management of Tomato spotted Wilt on Field-Grown Tomatoes. Plant Disease, 88(8), 882–890. doi: 10.1094/PDIS.2004.88.8.882.CrossRefGoogle Scholar
  31. Morris, S. W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C. C., et al. (1998). Induced resistance responses in maize. Molecular Plant Microbe Interaction, 11(7), 643–658. doi: 10.1094/mpmi.1998.11.7.643.CrossRefGoogle Scholar
  32. Moury, B., Palloix, A., Gebre Selassie, K., & Marchoux, G. (1997). Hypersensitive resistance to Tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica, 94(1), 45–52. doi: 10.1023/A:1002997522379.CrossRefGoogle Scholar
  33. Multani, P. S., Cramer, C. S., Steiner, R. L., & Creamer, R. (2009). Screening winter-sown onion entries for iris yellow spot virus tolerance. HortScience, 44(3), 627–632.Google Scholar
  34. Novartis Crop Protection. (1999). Actigard, a new and novel plant health product for protection against diseases of agronomic, vegetable and tree crops. Novartis Crop Protection Technical Bulletin 4. Greensboro, NC.Google Scholar
  35. Pappu, H. R., Csinos, A. S., McPherson, R. M., Jones, D. C., & Stephenson, M. G. (2000). Effect of acibenzolar-S-methyl and imidacloprid on suppression of Tomato spotted wilt tospovirus in flue-cured tobacco. Crop Protection, 19(5), 349–354. doi: 10.1016/S0261-2194 (00)00028-4.CrossRefGoogle Scholar
  36. Pappu, H. R., du Toit, L. J., Schwartz, H. F., & Mohan, S. K. (2006). Sequence diversity of the nucleoprotein gene of Iris yellow spot virus (genus Tospovirus, family Bunyaviridae) isolates from the western region of the United States. Archive of Virology, 151(5), 1015–1023. doi: 10.1007/s00705-005-0681-z.CrossRefGoogle Scholar
  37. Pappu, H. R., Rosales, I. M., & Druffel, K. L. (2008). Serological and molecular assays for rapid and sensitive detection of iris yellow spot virus infection of bulb and seed onion crops. Plant Disease, 92(4), 588–594. doi: 10.1094/PDIS-92-4-0588.CrossRefGoogle Scholar
  38. Pappu, H. R., Jones, R. A., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141(2), 219–236. doi: 10.1016/j.virusres.2009.01.009.PubMedCrossRefGoogle Scholar
  39. Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340–358. doi: 10.1016/0042-6822(61)90319-1.PubMedCrossRefGoogle Scholar
  40. Ruess, W., Mueller, K., Kanuf-Beiter, G., Kunz, W., & Staub, T. (1996). Plant activator CGA 245704: An innovative approach for disease control in cereals and tobacco. Pages 53-60 in. Proc. Brighton Crop Prot. Conf. Pest Dis.Google Scholar
  41. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell Online, 8(10), 1809–1819. doi: 10.1105/tpc.8.10.1809.CrossRefGoogle Scholar
  42. Sambrook, J., & Russell, D. W. (2001). In: molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor laboratory press.Google Scholar
  43. Schwartz, H. F., Alston, D., Alwang, J., Bartolo, M., Blunt, T., et al. (2014). Onion ipmPIPE: a coordinated effort to improve the management of onion thrips and iris yellow spot virus for the U.S. Onion industry. Plant Health Progress. doi: 10.1094/PHP-FE-14-0026.Google Scholar
  44. Shock, C. C., Feibert, E., Jensen, L., Mohan, S. K., & Saunders, L. D. (2008). Onion variety response to iris yellow spot virus. HortTechnology, 18(3), 539–544.Google Scholar
  45. Smith, T. N., Wylie, S. J., Coutts, B. A., & Jones, R. A. C. (2006). Localized distribution of iris yellow spot virus within leeks and its reliable large-scale detection. Plant Disease, 90(6), 729–733. doi: 10.1094/PD-90-0729.CrossRefGoogle Scholar
  46. Srinivasan, R., Sundaraj, S., Pappu, H. R., Diffie, S., Riley, D. G., & Gitaitis, R. D. (2012). Transmission of Iris yellow spot virus by Frankliniella fusca and Thrips tabaci (Thysanoptera: Thripidae). Journal of Economic Entomology, 105(1), 40–47.PubMedCrossRefGoogle Scholar
  47. Sticher, L., Mauch-Mani, B., & Metraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270. doi: 10.1146/annurev.phyto.35.1.235.PubMedCrossRefGoogle Scholar
  48. Tally, A., Oostendorp, M., Lawton, K., Staub, T., & Bassi, B. (1999). Commercial development of elicitors of induced resistance to pathogens. In A. A. Agrawal, S. Tuzun, & E. Bent (Eds.), Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture (pp. 357–369). St. Paul: American Phytopathological Society (APS Press).Google Scholar
  49. Tomlin, C. D. S. (2001). The pesticide manual (12th ed.). London: British Crop Protection Council.Google Scholar
  50. Tripathi, D., Jiang, Y. L., & Kumar, D. (2010). SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Letters, 584(15), 3458–3463. doi: 10.1016/j.febslet.2010.06.046.PubMedCrossRefGoogle Scholar
  51. Turina, M., Tavella, L., & Ciuffo, M. (2012). Chapter 12 - Tospoviruses in the Mediterranean Area. In Gad L, Hervé L, (Ed.), Advances in Virus Research. Academic Press, (84) 403-437.Google Scholar
  52. Vlot, A. C., Liu, P. P., Cameron, R. K., Park, S. W., Yang, Y., Kumar, D., et al. (2008). Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. The Plant Journal, 56(3), 445–456. doi: 10.1111/j.1365-313X.2008.03618.x.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Department of Plant PathologyWashington State UniversityPullmanUSA

Personalised recommendations