European Journal of Plant Pathology

, Volume 142, Issue 4, pp 815–827 | Cite as

Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple - a possibility of enhanced control of fire blight

  • Judit Kolozsváriné Nagy
  • Ildikó Schwarczinger
  • András Künstler
  • Miklós Pogány
  • Lóránt Király


We have investigated the uptake and delivery of Erwinia amylovora-specific bacteriophages in apple plants. The main aim of this study was to assess the potential of phage application as a means for improving phage persistence and thereby the control of fire blight, the disease caused by E. amylovora. Both phage strains tested (ΦEa104 and H5K) were able to translocate in apple seedlings and were detectable by a modified Adams’ drop test and real-time qPCR in plant parts above ground level following their application to the roots. Conversely, phages were detectable in roots after spraying them onto the stem and leaves. A water suspension of phages effectively decreased symptom severity of E. amylovora infection in apple seedlings following treatment of roots or aerial plant parts and application to the cotyledon, as judged by symptom bonitation. A similar effect was achieved by spraying a phage suspension onto flowering firethorn shoots. Interestingly no significant differences in controlling E. amylovora infection were found among the two phage strains tested. It seems that phages specific to E. amylovora can penetrate plants and exhibit a decrease in severity of symptoms caused by the phytopathogen. Demonstrating in planta translocation of E. amylovora-specific bacteriophages and their effect of reducing fire blight symptoms may significantly contribute to a better control of E. amylovora and promote further investigations on penetration and translocation of phages into plants.


Erwinia amylovora Fire blight Phage Apple plant Translocation 



We thank Professor K. Geider (Julius Kühn Institute, Dossenheim, Germany), for providing us bacterium and phage strains (Ea1/79Sm and ΦEa104). This research was supported by the Hungarian Scientific Research Fund (OTKA PD 75280, K 104730) and the Bolyai Scholarship (BO 609 12).

Conflict of interest

No conflict of interest is declared.

Supplementary material

10658_2015_654_MOESM1_ESM.pdf (463 kb)
ESM 1 (PDF 463 kb)
10658_2015_654_MOESM2_ESM.pdf (84 kb)
ESM 2 (PDF 83 kb)
10658_2015_654_MOESM3_ESM.pdf (886 kb)
ESM 3 (PDF 885 kb)
10658_2015_654_MOESM4_ESM.pdf (4.5 mb)
ESM 4 (PDF 4562 kb)


  1. Adams, M. H. (1959). Bacteriophages (pp. 450–456). New York: Interscience.Google Scholar
  2. Assadian, N. W., Di Giovanni, G. D., Enciso, J., Iglesias, J., & Lindemann, W. (2005). The transport of waterborne solutes and bacteriophage in soil subirrigated with wastewater blend. Agriculture, Ecosystem and Environment, 111, 279–291.CrossRefGoogle Scholar
  3. Astier, S., Albouy, J., Maury, Y., Robaglia, C., & Lecoq, H. (2007). Principles of plant virology: Genome, pathogenicity, virus ecology. Enfield: Science Publishers.Google Scholar
  4. Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., & Jackson, L. E. (2003). Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease, 87, 949–954.CrossRefGoogle Scholar
  5. Boulé, J., Sholberg, P. L., Lehman, S. M., O’Gorman, D. T., & Svircev, A. M. (2011). Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Canadian Journal of Plant Pathology, 33, 308–317.CrossRefGoogle Scholar
  6. Boyd, R. J., Hildebrandt, A. C., & Allen, O. N. (1971). Retardation of crown gall enlargement after bacteriophage treatment. Plant Disease Reporter, 55, 145–148.Google Scholar
  7. Dömötör, D., Becságh, P., Rákhely, G., Schneider, G., & Kovács, T. (2012). Complete genomic sequence of Erwinia amylovora Phage PhiEaH2. Journal of Virology, 86, 10899.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Falkenstein, H., Bellemann, P., Walter, S., Zeller, W., & Geider, K. (1988). Identification of Erwinia amylovora, the fireblight pathogen, by colony hybridization with DNA from plasmid pEa29. Applied and Environmental Microbiology, 54, 2798–2802.PubMedCentralPubMedGoogle Scholar
  9. Fujiwara, A., Hamasaki, R., Kawasaki, T., Makoto Fujie, M., & Yamada, T. (2011). Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 77, 4155–4162.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gill, J., & Abedon, S. T. (2003). Bacteriophage ecology and plants. APSnet Features Online
  11. Helms, K., & Wardlaw, I. F. (1976). Movement of viruses in plants: Long distance movement of tobacco mosaic virus in Nicotiana glutinosa. In I. F. Wardlaw & J. B. Passioura (Eds.), Transport and transfer processes in plants (pp. 283–293). New York: Academic.Google Scholar
  12. Iriarte, F. B., Balogh, B., Momol, M. T., Smith, L. M., Wilson, M., & Jones, J. B. (2007). Factors affecting survival of bacteriophage on tomato leaf surfaces. Applied and Environmental Microbiology, 73, 1704–1711.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Iriarte, F. B., Obradovic, A., Wernsing, M. H., Jackson, L. E., Balogh, B., Hong, J. A., et al. (2012). Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: two possible strategies for improving bacteriophage persistence for plant disease control. Bacteriophage, 2, 215–224.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Jones, J. B., Jackson, L. E., Balogh, B., Obradovich, A., Iriarte, F. B., & Momol, M. T. (2007). Bacteriophages for plant disease control. Annual Review of Phytopathology, 45, 245–262.PubMedCrossRefGoogle Scholar
  15. Kolozsvári, N. J., Király, L., & Schwarczinger, I. (2012). Phage therapy for plant disease control with a focus on fire blight. Central European Journal of Biology, 7, 1–12.Google Scholar
  16. Kovács, T., Gáll, J., Kovács, Á. L., Schneider, Gy., & Rákhely, G. (2012). Development and application of phage therapy based pesticides: practical experiences. The Hungarian Society for Microbiology’s Congress of the year 2012, 24–26 October 2012, Keszthely, Hungary.Google Scholar
  17. Kovács, T., Várnai, N. Á., Dömötör, D., Rákhely, G., Schneider, Gy. (2013). Phage therapy base pesticides: practical experiences. 2nd Biotechnology World Congress, 18–21 February, 2013, Dubai, UAE.Google Scholar
  18. Lehman, S. M. (2007). Development of a bacteriophage-based biopesticide for fire blight. PhD thesis. Ontario: Brock University.Google Scholar
  19. Mazur, B., & Paciorkiewicz, W. (1973). Dissemination of enteroviruses in the human environment I. Presence of poliovirus in various parts of vegetable plants grown on infected soil. Medycyna Doświadczalna i Mikrobiologia, 25, 93–98.PubMedGoogle Scholar
  20. Meczker, K., Dömötör, D., Vass, J., Rákhely, G., Schneider, G., & Kovács, T. (2014). The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight. FEMS Microbiology Letters, 350, 25–27.PubMedCrossRefGoogle Scholar
  21. Müller, I., Lurz, R., Kube, M., Quedenau, C., Jelkmann, W., & Geider, K. (2011). Molecular and physiological properties of bacteriophages from North America and Germany affecting the fire blight pathogen Erwinia amylovora. Microbial Biotechnology, 4, 735–745.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Murphy, W. H., & Syverton, J. T. (1958). Absorption and translocation of mammalian viruses by plants. II. Recovery and distribution of viruses in plants. Virology, 6, 623.PubMedCrossRefGoogle Scholar
  23. Obradovic, A., Jones, J. B., Momol, M. T., Olson, S. M., Jackson, L. E., Balogh, B., et al. (2005). Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease, 89, 712–716.CrossRefGoogle Scholar
  24. Oron, G. (1996). Soil as a complementary treatment component for simultaneous wastewater disposal and reuse. Water Science and Technology, 34, 243–252.CrossRefGoogle Scholar
  25. Oron, G., Goemans, M., Manor, Y., & Feyen, J. (1995). Poliovirus distribution in the soil-plant system under reuse of secondary wastewater. Water Research, 29, 1069–1078.CrossRefGoogle Scholar
  26. Rao, Y. P., & Srivastava, D. N. (1973). Application of phages in investigation of epidemiology of bacterial blight disease of rice. In S. P. Raychandhari (Ed.), Proceedings of the Indian National Science Academy: Epidemiology, forecasting and control of plant diseases, 37, (pp. 314–321).Google Scholar
  27. Schnabel, E. L., & Jones, A. L. (2001). Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Applied and Environmental Microbiology, 67, 59–64.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Schnabel, E. L., Fernando, W. G. D., Meyer, M. P., Jones, A. L., & Jackson, L. E. (1999). Bacteriophage of Erwinia amylovora and their potential for biocontrol. Acta Horticulturae, 489, 649–654.Google Scholar
  29. Schwarczinger, I., Kiss, E., Hevesi, M., Tóth, M., & Süle, S. (2011). Control of fire blight by bacteriophages on apple flowers. Acta Horticulturae, 896, 457–459.Google Scholar
  30. Svircev, A. M., Lehman, S. M., Kim, W. S., Barszcz, E., Schneider, K. E., & Castle, A. J. (2006). Control of the fire blight pathogen with bacteriophages. In W. Zeller & C. Ullrich (Eds.), Proceedings of the 1st International Symposium on Biological Control of Bacterial Plant Diseases (pp. 259–261). Berlin: Arno Brynda.Google Scholar
  31. Sykes, I. K., Lanning, S., & Williams, S. T. (1981). The effect of pH on soil actinophage. Journal of General Microbiology, 122, 271–280.Google Scholar
  32. Tanaka, H., Negishi, H., & Maeda, H. (1990). Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearunm M4S and its bacteriophage. Annals of the Phytopathologicial Society of Japan, 56, 243–246.CrossRefGoogle Scholar
  33. Taylor, A. L. (1963). Bacteriophage-induced mutation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 50, 1043–1051.Google Scholar
  34. Ward, R. L., & Mahler, R. J. (1982). Uptake of bacteriophage f2 through plant roots. Applied and Environmental Microbiology, 43, 1098–1103.PubMedCentralPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Judit Kolozsváriné Nagy
    • 1
  • Ildikó Schwarczinger
    • 1
  • András Künstler
    • 1
  • Miklós Pogány
    • 1
  • Lóránt Király
    • 1
  1. 1.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations