European Journal of Plant Pathology

, Volume 142, Issue 4, pp 677–689 | Cite as

Pseudomonas syringae pv. actinidiae strains isolated from past and current epidemics to Actinidia spp. reveal a diverse population structure of the pathogen



A total of 40 Pseudomonas syringae pv. actinidiae (Psa) strains isolated from past and current epidemics of kiwifruit bacterial canker worldwide were compared using repetitive-sequence PCR (rep-PCR) fingerprinting with BOX, ERIC and REP primer sets. The strains were also assessed for the presence of 23 type III secretion system effector genes, tolerance to sodium arsenite, the presence of coronatine and phaseolotoxin and for growth trends in Actinidia deliciosa leaves. Rep-PCR revealed the occurrence of 11 different Psa lineages among the strains and indicated a relevant genetic variability within the strains isolated in Japan during 1984–2011, whereas all strains obtained from the current pandemic showed the same banding pattern. All lineages showed the same growth trend when inoculated into A. deliciosa leaves. The difference between Psa strains from past and current epidemics was confirmed by the detection of different repertoires of type III effector protein genes. Not all Psa strains isolated in Japan during past epidemics of kiwifruit bacterial canker amplify genes of the argK-tox cluster of phaseolotoxin, suggesting their absence or gene mutation. The results of an arsenic tolerance assay indicated that almost all strains isolated in Italy during the current epidemic of kiwifruit bacterial canker were relatively tolerant to 0.15–0.35 mM sodium arsenite, whereas those isolated in Chile and New Zealand were very sensitive. Remarkably, the two strains from China were tolerant or very sensitive. Collectively, these data indicate a composite population structure of this pathogen, which was able to diversify in Japan during 27 years of recurrent infections to A. deliciosa. The current naming of Psa populations based on their numbering and presence/absence of phytotoxins should be reconsidered.


Kiwifruit bacterial canker Repetitive-sequence PCR Type III secretion system effectors Pandemic Phaseolotoxin 



This study has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under the grant agreement n° 613678 (DROPSA). The authors wish to thank the following colleagues for having supplied Psa cultures: E.V. Berroeta, Servicio Agricolo y Ganadero, Santiago, Chile; M.M. Lopez, Instituto Valenciano de Investigaciones Agraria, Moncada-Valencia, Spain; F. Poliakoff, Agence Nationale de Sécurité Sanitaire, Angers, France; Z.B. Zhao, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China; ICMP, International Collection of Microorganisms from Plants, Lincoln, New Zealand.


  1. Andolfi, A., Ferrante, P., Petriccione, M., Cimmino, A., Evidente, A., & Scortichini, M. (2014). Production of phytotoxic metabolites by Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit. Journal of Plant Pathology, 96, 169–176.Google Scholar
  2. Bereswill, S., Bugert, P., Völksch, B., Ullrich, M., Bender, C. L., & Geider, K. (1994). Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Applied and Environmental Microbiology, 60, 2924–2930.PubMedCentralPubMedGoogle Scholar
  3. Butler, M. I., Stockwell, P. A., Black, M. A., Day, R. C., Lamont, I. L., & Poulter, R. T. M. (2013). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS ONE, 8, e57464.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cai, J., Salmon, K., & Du Bow, M. S. (1998). A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology, 144, 2705–2713.PubMedCrossRefGoogle Scholar
  5. Chapman, J. R., Taylor, R. K., Weir, B. S., Romberg, M. K., Vanneste, J. L., Luck, J., & Alexander, B. J. (2012). Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology, 102, 1034–1044.PubMedCrossRefGoogle Scholar
  6. Cirvilleri, G., Scuderi, G., Catara, V., & Scortichini, M. (2007). Typing of Pseudomonas syringae pv. pisi strains by fluorescent AFLP fingerprinting. Journal of Plant Pathology, 89, 421–425.Google Scholar
  7. Cunty, A., Poliakoff, F., Rivoal, C., Cesbron, S., Fischer-Le Saux, M., & Lemaire, C. (2014). Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated in France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov. Plant Pathology. doi: 10.1111/ppa.12297.Google Scholar
  8. Dos Marques, A. S., Corbiere, R., Gardan, L., Tourte, C., Manceau, C., Taylor, J. D., & Samson, R. (2000). Multiphasic approach for the identification of the different classification levels of Pseudomonas savastanoi pv. phaseolicola. European Journal of Plant Pathology, 106, 715–734.CrossRefGoogle Scholar
  9. Ferrante, P., & Scortichini, M. (2009). Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in central Italy. Journal of Phytopathology, 157, 768–770.CrossRefGoogle Scholar
  10. Ferrante, P., & Scortichini, M. (2010). Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathology, 59, 954–962.CrossRefGoogle Scholar
  11. Ferrante, P., & Scortichini, M. (2011). Molecular and phenotypic variability among Pseudomonas avellanae, P. syringae pv. actinidiae and P. syringae pv. theae: the genomospecies 8 sensu Gardan et al. (1999). Journal of Plant Pathology, 93, 659–666.Google Scholar
  12. Ferrante, P., & Scortichini, M. (2015). Redefining the global populations of Pseudomonas syringae pv. actinidiae based on pathogenic, molecular and phenotypic characteristics. Plant Pathology, 64, 51–62.CrossRefGoogle Scholar
  13. Gallelli, A., Talocci, S., Pilotti, M., & Loreti, S. (2014). Real-time and quantitative PCR for detecting Pseudomonas syringae pv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker. Plant Pathology, 63, 264–276.CrossRefGoogle Scholar
  14. Guo, M., Tian, F., Wamboldt, Y., & Alfano, J. R. (2009). The majority of type III effector inventory of Pseudomonas syringae pv. tomato DC 3000 can suppress plant immunity. Molecular Plant-Microbe Interactions, 22, 1069–1080.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gutiérrez-Barranquero, J. A., Carrion, V. J., Murillo, J., Arrebola, E., Arnold, D. L., Cazorla, F. M., & De Vicente, A. (2013). A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. Phytopathology, 103, 1115–1129.PubMedCrossRefGoogle Scholar
  16. Hallin, M., Deplano, A., & Struelens, M. J. (2012). Molecular typing of bacterial pathogens: a tool for the epidemiological studies and control of infectious diseases. In S. Morand, F. Beaudeau, & J. Cabaret (Eds.), New frontiers of molecular epidemiology of infectious diseases (pp. 9–25). Netherlands: Springer Science + Business media B.V.CrossRefGoogle Scholar
  17. Han, H. S., Koh, Y. J., Hur, J.-S., & Jung, J. S. (2003). Identification and characterization of coronatine-producing Pseudomonas syringae pv. actinidiae. Journal of Microbiology and Biotechnology, 13, 110–118.Google Scholar
  18. Janjusevic, R., Quezada, C. M., Small, J., & Stebbins, C. E. (2013). Structure of the HopA1(21–102)-ShcA chaperone-effector complex of Pseudomonas syringae reveals conservation of a virulence factor binding motif from animal to plant pathogens. Journal of Bacteriology, 195, 658–664.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kaluzna, M., Ferrante, P., Sobiczewski, P., & Scortichini, M. (2010). Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST. Journal of Plant Pathology, 92, 781–787.Google Scholar
  20. Louws, F. J., Fulbright, D. W., Stephens, C. T., & De Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.PubMedCentralPubMedGoogle Scholar
  21. Marcelletti, S., & Scortichini, M. (2011). Clonal outbreaks of bacterial canker caused by Pseudomonas syringae pv. actinidiae on Actinidia chinensis and A. deliciosa in Italy. Journal of Plant Pathology, 93, 479–483.Google Scholar
  22. Marcelletti, S., & Scortichini, M. (2014). Definition of plant-pathogenic Pseudomonas genomospecies of the Pseudomonas syringae complex through multiple comparative approaches. Phytopathology, 104, 1274–1282.PubMedCrossRefGoogle Scholar
  23. Marcelletti, S., Ferrante, P., Petriccione, M., Firrao, G., & Scortichini, M. (2011). Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS ONE, 6, e27297.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Martin-Sanz, A., Pérez de la Vega, M., Murillo, J., & Caminero, C. (2012). Genetic, biochemical and pathogenic diversity of Pseudomonas syringae pv. pisi strains. Plant Pathology, 61, 1063–1072.CrossRefGoogle Scholar
  25. Mazzaglia, A., Studholme, D., Taratufolo, M. C., Cai, R., Almeida, N. F., & Goodman, T. (2012). Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS ONE, 7, e36518.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Mc Cann, H. C., Rikkerink, E. H. A., Bertels, F., Fiers, M., Lu, A., Rees-George, J., et al. (2013). Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insights into the origins of an emergent plant disease. PLoS Pathogens, 9, e1003503.CrossRefGoogle Scholar
  27. Ochman, H., & Moran, N. A. (2001). Genes lost and gene found: evolution of bacterial pathogenesis and symbiosis. Science, 292, 1096–1099.PubMedCrossRefGoogle Scholar
  28. Oguiza, J. A., Rico, A., Rivas, L. A., Sutra, L., Vivian, A., & Murillo, J. (2004). Pseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster. Microbiology, 150, 473–482.PubMedCrossRefGoogle Scholar
  29. Olczak-Woltman, H., Masny, A., Bartoszewski, G., Plucienniczak, A., & Niemirowicz-Szczytt, K. (2007). Genetic diversity of Pseudomonas syringae pv. lachrymans strains isolated from cucumber leaves collected in Poland. Plant Pathology, 56, 373–382.CrossRefGoogle Scholar
  30. Paez-Espino, A. D., Durante-Rodriguez, G., & De Lorenzo, V. (2015). Functional coexistence of twin arsenic resistance system in Pseudomonas putida KT2440. Environmental Microbiology, 17, 229–238.PubMedCrossRefGoogle Scholar
  31. Prithivirajsingh, S., Mishra, S. K., & Mahadevan, A. (2001). Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Molecular Biology Reports, 28, 63–72.PubMedCrossRefGoogle Scholar
  32. San Josè, M., Rodicio, M. R., Argudin, M. A., Mendoza, M. C., & Gonzalez, A. J. (2010). Regional variation in the population structure of Pseudomonas syringae pathovar phaseolicola from Spain are revealed by typing with PmeI pulsed-field gel electrophoresis, plasmid profiling and virulence gene complement. Microbiology, 156, 1795–1804.PubMedCrossRefGoogle Scholar
  33. Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of the hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.PubMedCrossRefGoogle Scholar
  34. Sawada, H., Kanaya, S., Tsuda, M., Suzuki, F., Azegami, K., & Saitou, N. (2002). A phylogenomic study of the OCTase genes in Pseudomona syringae pathovars : the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes in their genomes. Journal of Molecular Evolution, 54, 437–457.PubMedCrossRefGoogle Scholar
  35. Sawada, H., Miyoshi, T., & Ide, Y. (2014). Novel MLSA group (Psa 5) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia chinensis) in Japan. Japanese Journal of Phytopathology, 80, 171–184.CrossRefGoogle Scholar
  36. Scortichini, M. (1994). Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathology, 43, 1035–1038.CrossRefGoogle Scholar
  37. Scortichini, M. (2005). The population structure of some plant pathogenic bacteria: an ecological and adaptive perspective. Journal of Plant Pathology, 87, 5–12.Google Scholar
  38. Scortichini, M., Marchesi, U., Dettori, M. T., & Rossi, M. P. (2003). Genetic diversity, presence of syrB gene, host preference and virulence of Pseudomonas syringae pv. syringae strains from woody and herbaceous host plants. Plant Pathology, 52, 277–286.CrossRefGoogle Scholar
  39. Scortichini, M., Marcelletti, S., Ferrante, P., Petriccione, M., & Firrao, G. (2012). Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Molecular Plant Pathology, 13, 631–640.PubMedCrossRefGoogle Scholar
  40. Scortichini, M., Marcelletti, S., Ferrante, P., & Firrao, G. (2013). A genomic redefinition of Pseudomonas avellanae species. PLoS ONE, 8, e75794.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Shagol, C. C., Krishnamoorty, R., Kim, K., Sundaram, S., & Sa, T. (2014). Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea. Environmental Science and Pollution Research, 21, 9356–9365.PubMedCrossRefGoogle Scholar
  42. Shinozaki, T., Shimizu, S., Wiyochi, T., Kusumoto, S., & Sawada, H. (2014). Occurrence of kiwifruit canker caused by virulent strain (Psa 3) of Pseudomonas syringae pv. actinidiae in Ehime prefecture. Phytopathological Society of Japan, Kansai district meeting, p. 39.Google Scholar
  43. Slomnicka, R., Olczak-Woltman, H., Bartoszewski, G., & Niemirowicz-Szczytt, K. (2015). Genetic and pathogenic diversity of Pseudomonas syringae isolated from cucurbits. European Journal of Plant Pathology, 141, 1–14.CrossRefGoogle Scholar
  44. Takikawa, Y., Serizawa, S., Ichikawa, T., Tsuyumu, S., & Goto, M. (1989). Pseudomonas syringae pv. actinidiae pv. nov.: the causal bacterium of canker of kiwifruit in Japan. Annals of the Phytopathological Society of Japan, 55, 437–44.CrossRefGoogle Scholar
  45. Tamura, K., Imamura, M., Yoneyama, K., Kohno, Y., Takikawa, Y., Yamaguchi, I., & Takahashi, H. (2002). Role of phaseolotoxin production by Pseudomonas syringae pv. actinidiae in the formation of halo lesions of kiwifruit canker disease. Physiological and Molecular Plant Pathology, 60, 207–214.CrossRefGoogle Scholar
  46. Vanneste, J. L., Yu, J., Cornish, D. A., Tanner, D. J., Windner, R., Chapman, R., et al. (2013). Identification, virulence and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Disease, 97, 708–719.CrossRefGoogle Scholar
  47. Wang, L., Chen, S., Xiao, X., Hung, X., You, D., Zhou, X., et al. (2006). arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Applied Environmental Microbiology, 72, 3738–3742.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Euratom: Council for Agricultural Research and analysis of the economy graria; © European Union 2015

Authors and Affiliations

  1. 1.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)Centro di Ricerca per la FrutticolturaRomeItaly
  2. 2.Graduate School for Science and TechnologyShizuoka UniversityShizuokaJapan
  3. 3.Consiglio per la ricerca in agricoltura e l’analisi dell’economia Agraria (C.R.A.)Unità di ricerca per la FrutticolturaCasertaItaly

Personalised recommendations