European Journal of Plant Pathology

, Volume 142, Issue 2, pp 411–417 | Cite as

Low genetic diversity of a natural population of Garlic virus D from Poland

  • Maria Bereda
  • Elżbieta Kalinowska
  • Elżbieta Paduch-Cichal
  • Marek Stefan Szyndel


Thirty Garlic virus D isolates collected on a local scale over a 2-year period were analysed and compared to others available in GenBank. In total, 1139 nt were sequenced for each isolate, representing about 13 % of the complete virus genome. Bioinformatic analysis revealed that despite the wide geographic distribution and different growing conditions of hosts, GarV-D maintains an amino acid similarity between 95 to 100 % and 88 to 100 %, indicating high spatial and temporal genetic stability of the coat protein (CP) and nucleic acid binding protein (NABP) genes. The sequence alignments of all isolates of GarV-D were also searched for evidence of recombination and diversifying selection. The ratio of non-synonymous to synonymous polymorphic sites indicated that mostly purifying selection has acted within the analysed genes. However, three codons (two in CP and one in NABP sequences) showed to be under positive selection, including codon located inside conserved zinc-motif finger.


GarV-D Selection CP NABP Recombination 



Research supported by grant 2012/07/N/NZ9/00037 from National Science Center, Poland.


  1. Adams, M. J., Zerbini, F. M., French, R., Rabenstein, F., Stenger, D. C., & Valkonen, J. P. T. (2012). Family Flexiviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens, & E. J. Lefkowitz (Eds.), Virus taxonomy. Ninth report of the international committee on taxonomy of viruses (pp. 1069–1089). San Diego: Elsevier.Google Scholar
  2. Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-Van Dillen, P. M. E., & van der Nordaa, J. (1990). Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology, 28, 495–503.PubMedCentralPubMedGoogle Scholar
  3. Callaway, A., Giesman-Cookmeyer, D., Gillock, E. T., Sit, T. L., & Lommel, S. A. (2001). The multifunctional capsid proteins of plant RNA viruses. Annual Review of Phytopathology, 39, 419–460.CrossRefPubMedGoogle Scholar
  4. Chen, J., Zheng, H. Y., Antoniw, J. F., Adams, M. J., Chen, J. P., & Lin, L. (2004). Detection and classification of allexiviruses from garlic in China. Archives of Virology, 149, 435–445.CrossRefPubMedGoogle Scholar
  5. Chodorska, M., Paduch-Cichal, E., Szyndel, M. S., & Kalinowska, E. (2012). First report of Garlic virus D, E, and X on garlic in Poland. Journal of Plant Pathology, 95, S4.70.Google Scholar
  6. Domingo, E., & Holland, J. J. (1997). RNA virus mutations and fitness for survival. Annual Review of Microbiology, 51, 151–178.CrossRefPubMedGoogle Scholar
  7. Domingo, E., Biebricher, K., Eigen, M., & Holland, J. (2001). Quasispecies and RNA virus evolution: principles and consequences. Georgetown: Landes Bioscience.Google Scholar
  8. Dovas, C. I., & Vovlas, C. (2003). Viruses infecting allium spp. in southern italy. Journal of Plant Pathology, 85, 135.Google Scholar
  9. Galiakparov, N., Tanne, E., Mawassi, M., Gafny, R., & Sela, I. (2003). ORF5 of Grapevine virus A encodes a nucleic acid-binding protein and affects pathogenesis. Virus Genes, 27, 257–262.CrossRefPubMedGoogle Scholar
  10. García-Arenal, F., Fraile, M., & Malpica, J. M. (2001). Variability and genetic structure of plant virus populations. Annual Review of Phytopathology, 39, 157–186.CrossRefPubMedGoogle Scholar
  11. García-Arenal, F., Fraile, A., & Malpica, J. M. (2003). Variation and evolution of plant virus populations. International Microbiology, 6, 225–232.CrossRefPubMedGoogle Scholar
  12. Gieck, S. L., Hamm, P. B., David, N. L., & Pappu, H. R. (2009). First report of Garlic virus B and Garlic virus D in garlic in the Pacific Northwest. Plant Disease, 93, 431.CrossRefGoogle Scholar
  13. King, A. M. Q., Adams, M. J., Carstens, E. B., & Lefkowitz, E. J. (2012). Ninth report of the international committee on taxonomy of viruses. San Diego: Elsevier.Google Scholar
  14. Koo, B. J., Kang, S. G., & Chang, M. U. (2002). Survey of garlic virus disease and phylogenetic characterization of garlic viruses of the genus Allexivirus isolated in Korea. Journal of Plant Pathology, 18, 237–243.CrossRefGoogle Scholar
  15. Kosakovsky Pond, S. L., Frost, S. D. W., & Muse, S. V. (2005). HyPhy: hypothesis testing using phylogenies. Bioinformatics, 21, 676–679.CrossRefGoogle Scholar
  16. Lanzoni, C., Ratti, C., Turina, M., Pisi, A., Tedeschi, P., & Autonell, C. R. (2006). Molecular characterisation of Allexiviruses from garlic in Italy. Journal of Plant Pathology, 88, 47.Google Scholar
  17. Malinowski, T. (1997). Silica capture-reverse transcription-polymerase chain reaction (SC-RT-PCR): application for the detection of several plant viruses. In H. W. Dehne, G. Adam, M. Diekmann, J. Frahm, A. MaulerMachnik, & P. VanHalteren (Eds.), Diagnosis and identification of plant pathogens, proceedings of 4th international EFPP symposium Bonn, 9–12 September 1996 (pp. 445–448). Budapest: Kluwer Academic Publishers.Google Scholar
  18. Malpica, J. M., Fraile, A., Moreno, I., Obies, C. I., Drake, J. W., & García-Arenal, F. (2002). The rate and character of spontaneous mutation in an RNA virus. Genetics, 162, 1505–1511.PubMedCentralPubMedGoogle Scholar
  19. Martin, D. P. (2009). Recombination detection and analysis using RDP3. Methods in Molecular Biology, 537, 185–205.CrossRefPubMedGoogle Scholar
  20. Melo-Filho, P. A., Nagata, T., Dusi, A. N., Buso, J. A., Torres, A. C., Eiras, M., & Resende, R. O. (2004). Detection of three Allexivirus species infecting garlic in Brazil. Pesquisa Agropecuária Brasileira, 39, 375–340.Google Scholar
  21. Sánchez-Campos, S., Díaz, J. A., Monci, F., Bejarano, E. R., Reina, J., Navas-Castillo, J., Aranda, M. A., & Moriones, E. (2002). High genetic stability of the begomovirus Tomato yellow leaf curl Sardinia virus in southern Spain over an 8-year period. Phytopathology, 92, 842–849.CrossRefPubMedGoogle Scholar
  22. Shahraeen, N., Lesemann, D. E., & Ghotbi, T. (2008). Survey for viruses infecting onion, garlic and leek crops in Iran. EPPO Bulletin, 38, 131–135.CrossRefGoogle Scholar
  23. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Torres, A. C., Eiras, M., & Resende, R. (2004). Detection of three Allexivirus species infecting garlic in Brazil. Pesquisa Agropecuária Brasileira, 39, 735–740.Google Scholar
  25. Vives, M. C., Rubio, L., Galipienso, L., Navarro, L., Moreno, P., & Guerri, J. (2002). Low genetic variation between isolates of Citrus leaf blotch virus from different host species and of different geographical origins. Journal of General Virology, 83, 2587–2591.PubMedGoogle Scholar
  26. Ward, L. I., Perez-Egusquiza, Z., Fletcher, J. D., & Clover, G. R. G. (2009). A survey of viral diseases of Allium crops in New Zealand. Australasian Plant Pathology, 38, 533–539.CrossRefGoogle Scholar
  27. Zhou, Z. S., Dell’Orco, M., Saldarelli, P., Turturo, C., Minafra, A., & Martelli, G. P. (2006). Identification of an RNA silencing suppressor in the genome of Grapevine virus A. Journal of General Virology, 87, 2387–2395.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Maria Bereda
    • 1
  • Elżbieta Kalinowska
    • 1
  • Elżbieta Paduch-Cichal
    • 1
  • Marek Stefan Szyndel
    • 1
  1. 1.Department of Plant PathologyWarsaw University of Life Sciences-SGGWWarsawPoland

Personalised recommendations