European Journal of Plant Pathology

, Volume 141, Issue 4, pp 731–745 | Cite as

Identification of a wheat polygalacturonase-inhibiting protein involved in Fusarium head blight resistance



The plant cell wall is the first barrier to obstruct attack by pathogens. The polygalacturonase-inhibiting protein (PGIP) can specifically recognize and inhibit polygalacturonase (PG), a hydrolase that is secreted by fungi to invade plants, thus protecting plants from fungal infection by reducing the hydrolytic activity of PGs. In this study, we cloned a novel PGIP gene, Tapgip3, that is located on the 7D chromosome and encoded a 791 amino acid protein in the Fusarium head blight (FHB)-resistant wheat cultivar Ning7840. The real-time PCR analysis showed that this gene was upregulated sharply in spikes at 48 h after infection by either Fusarium graminearum or the trichothecene deoxynivalenol (DON). Subcellular localization analysis revealed that TaPGIP3 was secreted on the plant cell wall. When the transcripts of Tapgip3 were knocked down by barley stripe mosaic virus—virus-induced gene silencing (BSMV-VIGS), the growth of F. graminearum hyphae was promoted with larger lesions on wheat leaves. This suggests that Tapgip3 plays an important role in the response to F. graminearum infection. Although salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA) have been reported to be involved in wheat FHB resistance, we demonstrate in our study that the two copies of Tapgip3 are negatively regulated by these three hormones and positively regulated by indoleacetic acid (IAA).


Polygalacturonase-inhibiting protein (PGIP) Fusarium head blight Virus-induced gene silencing (VIGS) 



polygalacturonase-inhibiting protein




barley stripe mosaic virus


virus-induced gene silencing


Salicylic acid


Methyl jasmonate


Abscisic acid


Indoleacetic acid


Fusarium head blight




hours post treatment


days post inoculation



This work was financially supported by the National Natural Science Foundation of China (No. 31200982), National Program on Key Basic Research Project (973 Program, 2014CB138100), the Shandong province programs (20133702120002 and BS2013NY006) and Ministry of Agriculture transgenic major projects (2011ZX08002-004, 2011ZX08002-004).

Supplementary material

10658_2014_574_MOESM1_ESM.ppt (156 kb)
Figure S1 (PPT 155 kb)
10658_2014_574_MOESM2_ESM.ppt (316 kb)
Figure S2 (PPT 315 kb)
10658_2014_574_MOESM3_ESM.ppt (1.6 mb)
Figure S3 (PPT 1594 kb)


  1. Alexandersson, E., Becker, J. V. W., Jacobson, D., Nguema-Ona, E., Steyn, C., Denby, K. J., et al. (2011). Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Research Notes, 4, 493–501.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Audenaert, K., Van Broeck, R., Bekaert, B., De Witte, F., Heremans, B., Messens, K., et al. (2009). Fusarium head blight (FHB) in Flanders: population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. European Journal of Plant Pathology, 125, 445–458.CrossRefGoogle Scholar
  3. Bai, G. H., & Shaner, G. (2004). Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 42, 135–161.CrossRefPubMedGoogle Scholar
  4. Bailey, T. L., Boden, M., Busker, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37, W202–W208.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bezier, A., Lambert, B., & Baillieul, F. (2002). Cloning of a grapevine Botrytis-responsive gene that was homology to the tobacco hypersensitivity-related hsr203 J. Journal of Experimental Botany, 53, 2279–2280.CrossRefPubMedGoogle Scholar
  6. Blom, N., Gammeltoft, S., & Brunak, S. (1999). Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 294, 1351–1362.CrossRefPubMedGoogle Scholar
  7. Boenisch, M. J., & Schäfer, W. (2011). Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant and Biology, 11, 110.CrossRefGoogle Scholar
  8. Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., D’Amore, R., Allen, A. M., et al. (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491, 705–710.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Chen, F. G., Liu, S. W., Zhao, F., Xu, C. H., & Xia, G. M. (2010). Molecular characterization of the low-molecular weight glutenin subunit genes of tall wheatgrass and functional properties of one clone Ee34. Amino Acids, 38, 991–999.CrossRefPubMedGoogle Scholar
  10. Cheng, Y., Cui, L., Li, J. Y., Andrew, O. J., Zhi, Y. L., Cheng, G. H., et al. (2011). A high throughput barely stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS ONE, 6, e26468.CrossRefGoogle Scholar
  11. D’Ovidio, R., Mattei, B., Roberti, S., & Bellincampi, D. (2004). Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. BBA-Protein Proteomics, 1696, 237–244.CrossRefGoogle Scholar
  12. Das, P., Ito, T., Wellmer, F., Vernoux, T., Dedieu, A., Traas, J., et al. (2009). Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development, 136, 1605–1611.CrossRefPubMedGoogle Scholar
  13. De Lorenzo, G., & Ferrari, S. (2002). Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Current Opinion in Plant Biology, 5, 295–299.CrossRefPubMedGoogle Scholar
  14. De Lorenzo, G., D’Ovidio, R., & Cervone, F. (2001). The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annual Review of Phytopathology, 39, 313–335.CrossRefPubMedGoogle Scholar
  15. Ding, L. N., Xu, H. B., Yi, H. Y., Yang, L. M., Kong, Z. X., Zhang, L. X., et al. (2011). Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS ONE, 6(4), e19008.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Federici, L., Matteo, A. D., Fernandez-Recio, J., Tsernoglou, D., & Cervone, F. (2006). Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends in Plant Science, 11, 65–70.CrossRefPubMedGoogle Scholar
  17. Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F., & De Lorenzo, G. (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell, 15, 93–106.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Ferrari, S., Galletti, R., Vairo, D., Cervone, F., & De Lorenzo, G. (2006). Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Molecular Plant Microbe Interactions, 19, 931–936.CrossRefPubMedGoogle Scholar
  19. Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.CrossRefPubMedGoogle Scholar
  20. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Höfgen, R., & Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16, 9877.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Hu, D. Q., Dai, R. Q., Wang, Y. H., Zhang, Y. H., Liu, Z. Y., Fang, R. J., et al. (2012). Molecular cloning, sequence analysis, and expression of the polygalacturonase-inhibiting protein (PGIP) gene in mulberry. Plant Molecular and Biology Reproduction, 30, 176–186.CrossRefGoogle Scholar
  23. Janni, M., Sella, L., Favaron, F., Blechl, A. E., De Lorenzo, G., & D’Ovidio, R. (2008). The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Molecular Plant Microbe Interactions, 21, 171–177.CrossRefPubMedGoogle Scholar
  24. Janni, M., Bozzini, T., Moscetti, I., Volpi, C., & D’Ovidio, R. (2013). Functional characterization of wheat Pgip genes reveals their involvement in the local response to wounding. Plant Biology, 15, 1019–1024.CrossRefPubMedGoogle Scholar
  25. Johansen, M. B., Kiemer, L., & Brunak, S. (2006). Analysis and prediction of mammalian protein glycation. Glycobiology, 16, 844–853.CrossRefPubMedGoogle Scholar
  26. Kemp, G., Bergmann, C. W., Clay, R., Van der Westhuizen, A. J., & Pretorius, Z. A. (2003). Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat. Molecular Plant Microbe Interactions, 16, 955–961.CrossRefPubMedGoogle Scholar
  27. Kong, L. R., Anderson, J. M., & Ohm, H. W. (2005). Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome, 48, 29–40.CrossRefPubMedGoogle Scholar
  28. Kong, L. R., Ohm, H. W., & Anderson, J. M. (2007). Expression analysis of defense-related genes in wheat in response to infection by Fusarium graminearum. Genome, 50, 1038–1048.CrossRefPubMedGoogle Scholar
  29. Lan, H. Y., Tian, Y. C., Wang, C. H., Liu, G. Z., Zhang, L. H., Wang, L. L., et al. (2000). Studies of transgenic tobacco plants expressing β-1,3 Glucanase and chitinase gene and their potential of fungal resistance. Acta Genetica Sinica, 27, 70–77 (In Chinese).PubMedGoogle Scholar
  30. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.CrossRefPubMedGoogle Scholar
  31. Lawrence, C. B., Singh, N. P., Qiu, J., Gardner, R. G., & Tuzun, S. (2000). Constitutive hydrolytic enzymes are associated with polygenic resistance of to tomato Alternaria solani and may function as an elicitor release mechanism. Physiological and Molecular Plant Pathology, 57, 211–220.CrossRefGoogle Scholar
  32. Letunic, I., Doerks, T., & Bork, P. (2014). SMART: recent updates, new developments and status in 2015. Nucleic Acids Research. doi: 10.1093/nar/gku949.Google Scholar
  33. Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48, 1888–1896.CrossRefGoogle Scholar
  34. Liu, D. Q., Li, W. X., He, X., Ding, Y. M., Chen, C. Y., & Ge, F. (2013). Characterization and functional analysis of a novel PGIP gene from Pyrus pyrifolia Nakai cv Huobali. Acta Physiologiae Plantarum, 35, 1247–1256.CrossRefGoogle Scholar
  35. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.CrossRefPubMedGoogle Scholar
  36. Makandar, R., Essig, J. S., Schapaugh, M. A., Trick, H. N., & Shah, J. (2006). Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant Microbe Interactions, 19, 123–129.CrossRefPubMedGoogle Scholar
  37. McMullen, M., Jones, R., & Gallemberg, D. (1997). Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 81, 1340–1348.CrossRefGoogle Scholar
  38. McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, H. D., Shaner, G., & Van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium Head Blight. Plant Disease, 96, 1712–1728.CrossRefGoogle Scholar
  39. Miller, S. S., Chabot, D. M. P., Ouellet, T., Harris, L. J., & Fedak, G. (2004). Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can J Plant Pathol, 26, 453–463.Google Scholar
  40. Mochida, K., Yoshida, T., Sakurai, T., Ogihara, Y., & Shinozaki, K. (2009). TriFLDB: a database of clustered full-length coding sequences from Triticeae with Arabidopsis to comparative grass genomics. Plant Physiology, 150, 1135–1146.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Nelson, B. K., Cai, X., & Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant Journal, 51, 1126–1136.CrossRefPubMedGoogle Scholar
  42. Powell, A. L. T., van Kan, J., ten Have, A., Visser, J., Greve, C. L., Bennett, A. B., et al. (2000). Transgenic expression of pear PGIP in tomato limits fungal colonization. Molecular Plant Microbe Interactions, 13, 942–950.CrossRefPubMedGoogle Scholar
  43. Prandini, A., Sigolo, S., Filippi, L., Battilani, P., & Piva, G. (2009). Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat. Food and Chemical Toxicology, 47, 927–931.CrossRefPubMedGoogle Scholar
  44. Ribichich, K. F., Lopez, S. E., & Vegetti, A. C. (2000). Histopathological spikelet changes produced by Fusarium graminearum susceptible and resistant wheat cultivars. Plant Disease, 84, 974–802.CrossRefGoogle Scholar
  45. Samuel, E. F., Preece, J., Kimbrel, J. A., Marchini, G. L., Sage, A., Clark, K. Y., et al. (2013). Sequencing and De Novo transcriptome assembly of Brachypodium sylvaticum. APPS, 1, 1200011.CrossRefGoogle Scholar
  46. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceeding of the National Academy and Sciences USA, 74, 5463–5467.CrossRefGoogle Scholar
  47. Schultz, J., Milpetz, F., Bork, P., & Ponting, C. P. (2002). SMART, a simple modular architecture research tool: Identification of signaling domains. Proceeding of the National Academy and Sciences USA, 95, 5857–5864.CrossRefGoogle Scholar
  48. Shi, H. Y., Zhu, L., Zhou, Y., Li, G., Chen, L., & Li, X. B. (2009). A cotton gene encoding a polygalacturonase inhibitor-like protein is specifically expressed in petals. Acta Biochimica et Biophysica Sinica, 41, 316–324.CrossRefPubMedGoogle Scholar
  49. Shi, H. Y., Zhang, Y. X., & Chen, L. (2013). Expression and regulation of a pear polygalacturonase inhibitor protein gene (PpPGIP1) during fruit development, under salicylic acid treatment, and in diseased fruit. Acta Physiologiae Plantarum, 35, 3181–3189.CrossRefGoogle Scholar
  50. Steven, H. S., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunol, 12, 89–100.CrossRefGoogle Scholar
  51. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular and Biological Evolution, 28, 2731–2739.CrossRefGoogle Scholar
  52. Teardo, E., Formentin, E., Segalla, A., Giacometti, G. M., Marin, O., Zanetti, M., et al. (2011). Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasma membrane. Biochimica et Biophysica Acta, 1807, 359–367.CrossRefPubMedGoogle Scholar
  53. The International Brachypodium Initiative. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768.CrossRefGoogle Scholar
  54. Tomassini, A., Sella, L., Raiola, A., D’Ovidio, R., & Favaron, F. (2009). Characterization and expression of Fusarium graminearum endo-polygalacturonases in vitro and during wheat infection. Plant Pathology, 58, 556–564.CrossRefGoogle Scholar
  55. Wang, H. W., Hwang, S. G., Karuppanapandian, T., Liu, A., Kim, W., & Jang, C. S. (2012). Insight into the molecular evolution of non-specific lipid transfer proteins via comparative analysis between rice and sorghum. DNA Research, 19, 179–194.CrossRefPubMedCentralPubMedGoogle Scholar
  56. Wang, X. J., Zhu, X. P., Tooley, P., & Zhang, X. G. (2013). Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Cpsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. Plant Molecular Biology, 81, 379–400.CrossRefPubMedGoogle Scholar
  57. Wanyoike, M. W., Kang, Z., & Buchenauer, H. (2002). Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. European Journal of Plant Pathology, 108, 803–810.CrossRefGoogle Scholar
  58. Xiang, Y., Song, M., Wei, Z. Y., Tong, J. H., Zhang, L. X., Xiao, L. T., et al. (2011). A jacalin-related lectin-like gene in wheat is a component of the plant defence system. Journal of Experimental Botany, 62, 5471–5483.CrossRefPubMedCentralPubMedGoogle Scholar
  59. Xiao, J., Jin, X. H., Jia, X. P., Wang, H. Y., Cao, A. Z., Zhao, W. P., et al. (2013). Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 14, 197–216.CrossRefPubMedCentralPubMedGoogle Scholar
  60. Zhang, X. L., Shen, X. R., Hao, Y. F., Cai, J. J., Ohm, H. W., & Kong, L. R. (2011). A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 122, 263–270.CrossRefPubMedGoogle Scholar
  61. Zhu, X. L., Li, Z., Xu, H. J., Zhou, M. P., Du, L. P., & Zhang, Z. Y. (2012). Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Functional and Integrative Genomics, 12, 481–488.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Biology, College of AgronomyShandong Agricultural UniversityTai’anPeople’s Republic of China
  2. 2.College of Life ScienceGuizhou Normal UniversityGuiyangPeople’s Republic of China

Personalised recommendations