Skip to main content
Log in

Hyperspectral and molecular analysis of Stagonospora nodorum blotch disease in durum wheat

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Stagonospora nodorum blotch (SNB) is an important wheat disease caused by Parastagonospora nodorum (Berk.) Studies in Mycology, 75: 307–390 (2013). This necrotrophic pathogen can attack common and durum wheat, causing grain yield, quality and safety worsening. This work aims to studying a novel diagnostic technique for early detecting P. nodorum attack and infection progression in three Italian commercial varieties of durum wheat. Plants of these wheat varieties were inoculated in field with a spore suspension of P. nodorum. Different experimental conditions were used: P. nodorum was inoculated in plants at different growth stage (GS); GS32 (Inf A) and GS 73 (milk development - Inf B). To consider natural contaminating mycoflora interference for the subsequent analysis, non-inoculated controls, fungicide-treated (T) or non-treated (NT) were used. Inf A produced symptoms both on leaves and ears which appeared to be more severe compared to those induced by Inf B, even if the latter affected more thoroughly wheat yield in at least one variety of wheat. An early detection of SNB could be helpful to manage a targeted control strategy. Hyperspectral imaging analyses showed that this rapid and non-invasive technique allows differentiation between spectra of healthy and diseased tissues already 48 h after inoculation. qPCR confirmed hyperspectral results. The results showed that marked differences emerge in the ability of the varieties to tolerate the SNB disease especially regarding grain yield and quality. Compared with classical approaches, the hyperspectral imaging analysis may represent a useful tool for early detection of P. nodorum on wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, S., Singh, P. K., McMullen, M. P., Mergoum, M., & Adhikari, T. B. (2008). Resistance to multiple leaf spot diseases in wheat. Euphytica, 159, 167–179.

    Article  Google Scholar 

  • Arseniuk, E., Goral, T., Sowa, W., Czembor, H. J., Krysiak, H., & Scharen, A. L. (1998). Transmission of Stagonospora nodorum and Fusarium spp. on triticale and wheat seed and the effect of seedhorne Stagonospora nodorum on disease severity under field conditions. Journal of Phytopathology, 146, 339–345.

    Article  Google Scholar 

  • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

    Article  CAS  Google Scholar 

  • Bhathal, J. S., Loughman, R., & Speijers, J. (2003). Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria blotch. European Journal of Plant Pathology, 109, 435–443.

    Article  CAS  Google Scholar 

  • Chen, J., Griffey, C. A., Liu, S., Saghai Maroof, M. A., Murphy, J. P., Navarro, R. A., Sneller, C. H., Brown-Guedira, G. L., & Souza, E. J. (2012). Registration of Fusarium head blight–resistant soft red winter wheat germplasm va04w-433 and va04w-474. Journal of Plant Registrations, 6(1), 1–6.

    Article  Google Scholar 

  • Ciuffetti, L. M., Tuori, R. P., & Gaventa, J. M. (1997). A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell, 9, 135–142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cunfer, B. M., & Ueng, P. P. (1999). Taxonomy and identification of Septoria and Stagonospora species on small-grain cereals. Annual Review of Phytopathology, 37, 267–284.

    Article  CAS  PubMed  Google Scholar 

  • Del Fiore, A., Reverberi, M., Ricelli, A., Pinzari, F., Serranti, S., Fabbri, A. A., Bonifazi, G., & Fanelli, C. (2010). Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. International Journal of Food Microbiology, 144, 64–71.

    Article  PubMed  Google Scholar 

  • Develey-Riviere, M. P., & Galiana, E. (2007). Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytologist, 175, 405–416.

    Article  PubMed  Google Scholar 

  • El-Bana, A. A., & Galal, A. A. (2007). Resistance of some wheat varieties to Stagonospora nodorum infection. African Crop Science Conference Proceedings, 8, 2095–2100.

    Google Scholar 

  • Eyal, Z. (1999). The Septoria tritici and Stagonospora nodorum blotch diseases of wheat. European Journal of Plant Pathology, 105, 629–641.

    Article  Google Scholar 

  • Eyal, Z., Scharen, A. L., Prescott, J. M., & van Ginkel, M. (1987). The Septoria diseases of wheat: Concepts and methods of disease management (1st ed.). Mexico: CIMMIT.

    Google Scholar 

  • Farber, P., Geisen, R. A., & Holzapfel, W. H. (1997). Detection of aflatoxigenic fungi in figs by a PCR reaction. International Journal of Food Microbiology, 36, 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Faris, J. D., & Friesen, T. L. (2009). Reevaluation of a Tetraploid wheat population indicates that the tsn1–toxa interaction is the only factor governing Stagonospora nodorum blotch susceptibility. Phytopathology, 99(8), 906–912.

    Article  CAS  PubMed  Google Scholar 

  • Fried, P. M., & Meister, E. (1987). Inheritance of leaf and head resistance of winter wheat to Septoria nodorum in a diallel cross. Phytopathology, 77, 1371–1375.

    Article  Google Scholar 

  • Geladi, P., Grahn, H., & Burger, J. (2007). Techniques and applications of hyperspectral image analysis. In H. Grahn & P. Geladi (Eds.), Multivariate images, hyperspectral imaging: Background and equipment (pp. 1–15). England: West Sussex.

    Google Scholar 

  • Hyvarinen, T., Herrala, E., & Dall’Ava, A. (1998). Direct sight imaging spectrograph: A unique add-on component brings spectral imaging to industrial applications. In. Proceedings of SPIE, Vol. 3302.

  • Iori, A., Quaranta, F., Cacciatori, P., Cecchini, C., Cristofori, C., Mi, C., Ma, C., L’Aurora, A., & Foschia, M. (2011a). Effects of Stagonospora nodorum on durum wheat varieties artificially inoculated in the field. Annual Wheat Newsletter, 57, 39–40.

    Google Scholar 

  • Iori, A., Niglio, A., Cacciatori, P., Cecchini, C., Cristofori, C., & Chierico, M. (2011b). Stagonospora nodorum blotch: Agronomic and quality data of three durum wheat varieties. Journal of Plant Pathology, 93(4, Supplement), S4.25–S4.62.

    Google Scholar 

  • Iori, A., Aureli, G., D’ Egidio, M. G., Quaranta, F., Belocchi, A., Matere, A., Melloni, S., Pucciarmati, S., Pasquini, M. (2012). Durum wheat: Disease development in organic farming systems. International MPU Workshop 2012- Bari 24-26/10/2012.

  • Legendre, P., & Legendre, L. (1998). Numerical ecology (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Liu, Z. H., Friesen, T. L., Rasmussen, J. B., Ali, S., Meinhardt, S. W., & Faris, J. D. (2004a). Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology, 94, 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. H., Faris, J. D., Meinhardt, S. W., Ali, S., Rasmussen, J. B., & Friesen, T. L. (2004b). Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology, 94, 1056–1060.

    Article  CAS  PubMed  Google Scholar 

  • McKendry, A. L., Henke, G. E., & Finney, P. L. (1995). Effects of septoria leaf blotch on soft red winter wheat milling and baking quality. Cereal Chemistry, 72, 142–146.

    CAS  Google Scholar 

  • Oliver, R. P., Rybak, K., Shankar, M., Loughman, R., Harry, N., & Solomon, P. S. (2008). Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum-wheat pathosystem as a model. Plant Pathology, 57(3), 527–532.

    Article  CAS  Google Scholar 

  • Oliver, R. P., Friesen, T. L. F., Faris, J. D., & Solomon, P. S. (2012). Stagonospora nodorum: from pathology to genomics and host resistance. Annual Review of Phytopathology, 50, 23–43.

    Article  CAS  PubMed  Google Scholar 

  • Pasquini, M., Pancaldi, D., Casulli, F., Iori, A., Riccardi, M., Gazza, L., Cacciatori, P., Faccini, N., Corazza, L., Santori, A., Vallega, V., Rubies-Autonell, C., Delogu, G. (2003). Metodi per il rilievo delle malattie in campo. In: M., Pasquini e G. Delogu (Ed.), Malattie dei Cereali a paglia. Manuale per la diagnosi delle principali patologie e per il riconoscimento dei relativi agenti patogeni. Failli Editore, Pisa, pp 78–90.

  • Pasquini, M., Iori, A., Matere, A., Nocente, F., Sereni, L., Casini, F., Cacciatori, P., Chierico, M., Chierico, M., Cristofori, C., Foschia, M., Isidori, G., Cambrea, M., Codianni, P., Finiguerra, F., Mameli, L., Petrini, A., Notario, T., & Viola, P. (2012). Grano: non abbassare la guardia contro le malattie fungine. Informatore Agrario, 39, 53–56.

    Google Scholar 

  • Quaranta, F., Belocchi, A., D’Egidio, M. G., Fornara, M., Cecchi, V., Cecchini, V., Gosparini, E., & Mazzon, V. (2009). Semina 2009: quali varietà di frumento duro scegliere. Informatore Agrario, 34, 19–25.

    Google Scholar 

  • Quaranta, F., Belocchi, A., Fornara, M., Mazzon, V., Cecchi, V., Cecchini, C., Pucciarmati, S., & D’Egidio, M. G. (2012). Varietà di grano duro per le semine 2012. Informatore Agrario, 33, 5–11.

    Google Scholar 

  • Robert, C., Bancal, M.-O., Nicolas, P., Lannou, C., & Ney, B. (2004). Analysis and modeling of effects of leaf rust and Septoria tritici blotch on wheat growth. Journal of Experimental Botany, 55, 1079–1094.

    Article  CAS  PubMed  Google Scholar 

  • Serranti, S., Cesare, D., & Bonifazi, G. (2013a). The development of a hyperspectral method for the detection of Fusarium-damaged, yellow berry and vitreous Italian durum wheat. Biosystems Engineering, 115, 20–30.

    Article  Google Scholar 

  • Serranti, S., Cesare, D., Marini, F., & Bonifazi, G. (2013b). Classification of oat and groat kernels using hyperspectral imaging. Talanta, 103, 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Shah, D. A., Bergstrom, G. C., & Sorrells, M. E. (2000). Differential seed infection of wheat varieties by Stagonospora nodorum. Plant Disease, 84, 749–752.

    Article  Google Scholar 

  • Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: Freeman.

    Google Scholar 

  • Tan, K.-C., Trengove, R. D., Maker, G. L., Oliver, R. P., & Solomon, P. S. (2009). Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum. Metabolomics, 5(3), 330–335.

    Article  CAS  Google Scholar 

  • Whalen, M. C. (2005). Host defence in a developmental context. Molecular Plant Pathology, 6, 347–360.

    Article  CAS  PubMed  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

    Article  CAS  Google Scholar 

  • Xu, S. S., Friesen, T. L., & Mujeeb-Kazi, A. (2004). Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Science, 44, 2238i.

    Article  Google Scholar 

  • Yuan, L., Huangc, Y., Loraammd, R. W., Niea, C., Wanga, J., & Zhang, J. (2014). Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research, 156, 199–207. doi:10.1016/j.fcr.2013.11.012.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zhang, J., Yuan, L., Wang, J., Huang, W., CHEN, L., & Zhang, D. (2012). Spectroscopic leaf level detection of powdery mildew for winter wheat using continuous wavelet analysis. Journal of Integrative Agriculture, 11, 1474–1484. doi:10.1016/S2095-3119(12)60147-6 (a).

    Article  Google Scholar 

  • Zhanga, J.-C., R-l, P., J-h, W., W-j, H., Yuana, L., & J-h, L. (2012a). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture, 85, 13–23. doi:10.1016/j.compag.2012.03.006. (b).

    Article  Google Scholar 

  • Zhanga, J., Pub, R., Huanga, W., Yuana, L., Luoa, J., & Wang, J. (2012b). Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134, 165–174. doi:10.1016/j.fcr.2012.05.011. (c).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Scala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iori, A., Scala, V., Cesare, D. et al. Hyperspectral and molecular analysis of Stagonospora nodorum blotch disease in durum wheat. Eur J Plant Pathol 141, 689–702 (2015). https://doi.org/10.1007/s10658-014-0571-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0571-x

Keywords

Navigation