Advertisement

European Journal of Plant Pathology

, Volume 141, Issue 4, pp 667–677 | Cite as

Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index

  • Kai Wu
  • Saifei Yuan
  • Guanhua Xun
  • Wen Shi
  • Bin Pan
  • Huilin Guan
  • Biao Shen
  • Qirong Shen
Article

Abstract

The colonization of rhizosphere by microorganisms is directly associated with bacterial growth, chemotaxis, biofilm formation, and the interaction with host plant root exudates. In this study, the responses of Ralstonia solanacearum to the root exudates from two tobacco cultivars (Hongda, susceptible; K326, resistant) were determined. The results showed that the population of R. solanacearum was much higher in the rhizosphere soil of Hongda than in the rhizosphere soil of K326, resulting in a higher disease index for the Hongda treatments (92.73 %). The attraction of R. solanacearum to Hongda root exudates (HRE) was stronger than the response to K326 root exudates (KRE). Four organic acids, oxalic acid, malic acid, citric acid, and succinic acid, from the root exudates were identified and subsequently evaluated. The amount of oxalic acid from HRE was significantly higher than that from KRE. The results also showed that oxalic acid could both significantly induce the chemotactic response and increase the biofilm biomass of R. solanacearum. Both malic acid and citric acid could significantly increase the chemotaxis ability in vitro and the recruitment of R. solanacearum to tobacco root under gnotobiotic conditions. Overall, these data suggested that the colonization of tobacco rhizosphere by pathogenic bacterial strains was influenced by the organic acids secreted from the roots. The results expand our understanding of the roles of root exudates in plant-microbe interactions and will be useful for screening and applying beneficial bacteria for better control of plant wilt diseases.

Keywords

Tobacco bacterial wilt Root exudates Ralstonia solanacearum Organic acids Chemotaxis 

Notes

Acknowledgments

This research was financially supported by the projects of the 111 project (B12009), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Chinese Ministry of Agriculture (201103004), the National Natural Science Foundation of China (41361075), and the Applied and Basic Research Foundation of Yunnan province (2013FA015).

Supplementary material

10658_2014_569_MOESM1_ESM.doc (33 kb)
Table S1 (DOC 33 kb)

References

  1. Bacilio-Jiménez, M., Aguilar-Flores, S., Ventura-Zapata, E., Pérez-Campos, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil, 249, 271–277.CrossRefGoogle Scholar
  2. Bais, H. P. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol, 134, 307–319.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A, 110, E1621–E1630.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Brencic, A., & Winans, S. C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev, 69, 155–194.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol, 74, 738–744.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cessna, S. G., Sears, V. E., Dickman, M. B., & Low, P. S. (2000). Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 12, 2191–2199.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Elphinstone, J., Hennessy, J., Wilson, J., & Stead, D. (1996). Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull, 26, 663–678.CrossRefGoogle Scholar
  8. Germida, J., & Siciliano, S. (2001). Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils, 33, 410–415.CrossRefGoogle Scholar
  9. Grayston, S. J., Wang, S., Campbell, C. D., & Edwards, A. C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem, 30, 369–378.CrossRefGoogle Scholar
  10. Gupta Sood, S. (2003). Chemotactic response of plant‐growth‐promoting bacteria towards roots of vesicular‐arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol, 45, 219–227.CrossRefPubMedGoogle Scholar
  11. Hamon, M. A., & Lazazzera, B. A. (2001). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol, 42, 1199–1209.CrossRefPubMedGoogle Scholar
  12. Hao, W. Y., Ren, L. X., Ran, W., & Shen, Q. R. (2010). Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum. Plant Soil, 336, 485–497.CrossRefGoogle Scholar
  13. Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant Soil, 321, 235–257.CrossRefGoogle Scholar
  14. Hendrick, C. A., & Sequeira, L. (1984). Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Appl Environ Microbiol, 48, 94–101.PubMedCentralPubMedGoogle Scholar
  15. Jones, D. L. (1998). Organic acids in the rhizosphere–a critical review. Plant Soil, 205, 25–44.CrossRefGoogle Scholar
  16. Kim, K. S., Min, J. Y., & Dickman, M. B. (2008). Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant-Microbe Interact, 21, 605–612.CrossRefPubMedGoogle Scholar
  17. Kourtev, P. S., Ehrenfeld, J. G., & Häggblom, M. (2002). Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152–3166.CrossRefGoogle Scholar
  18. Mark, G. L., Dow, J. M., Kiely, P. D., Higgins, H., Haynes, J., Baysse, C., Abbas, A., Foley, T., Franks, A., & Morrissey, J. (2005). Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A, 102, 17454–17459.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Morgan, J., Bending, G., & White, P. (2005). Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot, 56, 1729–1739.CrossRefPubMedGoogle Scholar
  20. Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol, 148, 1547–1556.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Scherf, J. M., Milling, A., & Allen, C. (2010). Moderate temperature fluctuations rapidly reduce the viability of Ralstonia solanacearum race 3, biovar 2, in infected geranium, tomato, and potato plants. Appl Environ Microbiol, 76, 7061–7067.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Schoonbeek, H. J., Jacquat-Bovet, A. C., Mascher, F., & Métraux, J. P. (2007). Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Mol Plant-Microbe Interact, 20, 1535–1544.CrossRefPubMedGoogle Scholar
  23. Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H., & Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol, 67, 4742–4751.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Tan, S., Yang, C., Mei, X., Shen, S., Raza, W., Shen, Q., & Xu, Y. (2013). The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Appl Soil Ecol, 64, 15–22.CrossRefGoogle Scholar
  25. Van de Broek, A., Lambrecht, M., & Vanderleyden, J. (1998). Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology, 144, 2599–2606.CrossRefGoogle Scholar
  26. Walker, T. S., Bais, H. P., Déziel, E., Schweizer, H. P., Rahme, L. G., Fall, R., & Vivanco, J. M. (2004). Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol, 134, 320–331.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Plant Physiol, 52, 487–511.Google Scholar
  28. Wu, K., Yuan, S., Wang, L., Shi, J., Zhao, J., Shen, B., & Shen, Q. (2014). Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol Fertil Soils, 50, 961–971.CrossRefGoogle Scholar
  29. Yao, J., & Allen, C. (2006). Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol, 188, 3697–3708.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Yao, J., & Allen, C. (2007). The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J Bacteriol, 189, 6415–6424.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Yao, H., & Wu, F. (2010). Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiol Ecol, 72, 456–463.CrossRefPubMedGoogle Scholar
  32. Zhang, N., Wang, D., Liu, Y., Li, S., Shen, Q., & Zhang, R. (2014). Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil, 374, 689–700.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Kai Wu
    • 1
    • 2
  • Saifei Yuan
    • 1
  • Guanhua Xun
    • 1
  • Wen Shi
    • 1
  • Bin Pan
    • 1
  • Huilin Guan
    • 2
  • Biao Shen
    • 1
  • Qirong Shen
    • 1
  1. 1.National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.Solar Energy Research Institute of Yunnan Normal UniversityYunnan Normal UniversityYunnanChina

Personalised recommendations