Advertisement

European Journal of Plant Pathology

, Volume 141, Issue 1, pp 193–197 | Cite as

Host ranges of Potato spindle tuber viroid, Tomato chlorotic dwarf viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plants

  • Yosuke Matsushita
  • Shinya Tsuda
Article

Abstract

Host ranges of Potato spindle tuber viroid (PSTVd), Tomato chlorotic dwarf viroid (TCDVd), Tomato apical stunt viroid (TASVd), and Colmunea latent viroid (CLVd) were investigated in 30 species from 12 genera of horticultural plants that are frequently traded internationally. They were mechanically inoculated, and viroid infection was checked using both ways of reverse-transcription polymerase chain reaction and back-inoculation to tomato. Among 30 species examined, eight to 10 were susceptible to PSTVd, TCDVd, TASVd, and CLVd. Most of these species belong to the Compositae and Solanaceae families, and symptoms were only observed in Calendula officinalis, Petunia × hybrida, and Solanum melongena. These data indicate a risk of unexpected viroid expansion by international trading of vegetatively propagated asymptomatic plant materials.

Keywords

asymptomatic Compositae pospiviroid Solanaceae 

Notes

Acknowledgments

TASVd and CLVd were kindly supplied by the Yokohama Plant Protection Station, the Ministry of Agriculture, Forestry and Fisheries of Japan. We are grateful to I. Fujisawa for devoted contributions to experiments and discussions during the study. We also thank Y. Matsumura, Y. Narita, and J. Sato for preparing the experimental materials, and L.M. Knight for critical reading of this manuscript. This study was supported by a Grant-in-Aid for “Regulatory research projects for food safety, animal health and plant protection” from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

References

  1. Behjatnia, S. A. A., Dry, I. B., Krake, L. R., Conde, B. D., Connelly, M. I., Randles, J. W., & Rezaian, M. A. (1996). New Potato spindle tuber viroid and Tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology, 86(8), 880–886.CrossRefGoogle Scholar
  2. Ding, B. (2009). The biology of viroid-host interactions. Annual Review of Phytopathology, 47, 105–1031.PubMedCrossRefGoogle Scholar
  3. Ding, B., & Itaya, A. (2007). Viroid: a useful model for studying the basic principles of infection and RNA biology. Molecular Plant-Microbe Interactions, 20(1), 7–20.PubMedCrossRefGoogle Scholar
  4. Hammond, R., Smith, D., & Diener, T. O. (1989). Nucleotide-sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences. Nucleic Acids Research, 17(23), 10083–10094.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Hunter, D. E., Darling, H. M., & Beale, W. L. (1969). Seed transmission of potato spindle tuber virus. American Potato Journal, 46(7), 247–250.CrossRefGoogle Scholar
  6. Lebas, B. S. M., Clover, G. R. G., Ochoa-Corona, F. M., Elliott, D. R., Tang, Z., & Alexander, B. J. R. (2005). Distribution of Potato spindle tuber viroid in New Zealand glasshouse crops of capsicum and tomato. Australasian Plant Pathology, 34(2), 129–133.CrossRefGoogle Scholar
  7. Luigi, M., Luison, D., Tomassoli, L., & Faggioli, F. (2011). First report of Potato spindle tuber and Citrus exocortis viroids in Cestrum spp. in Italy. New Disease Reports, 23, 4.CrossRefGoogle Scholar
  8. Matoušek, J., Piernikarczyk, J. J. R., Dědič, P., Mertelík, J., Uhlířová, K., Duraisamy, G. S., Orctová, L., Kloudová, K., Ptáček, J., & Steger, G. (2014). Characterization of Potato spindle tuber viroid (PSTVd) incidence and new variants from ornamentals. European Journal of Plant Pathology, 138(1), 93–101.CrossRefGoogle Scholar
  9. Matsushita, Y., Tsukiboshi, T., Ito, Y., & Chikuo, Y. (2007). Nucleotide sequences and distribution of Chrysanthemum Stunt Viroid in Japan. Journal of the Japanese Society for Horticultural Science, 76(4), 333–337.CrossRefGoogle Scholar
  10. Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of General Plant Pathology, 74(2), 182–184.CrossRefGoogle Scholar
  11. Matsushita, Y., Usugi, T., & Tsuda, S. (2009). Host range and properties of Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 124(2), 349–352.CrossRefGoogle Scholar
  12. Matsushita, Y., Usugi, T., & Tsuda, S. (2010). Development of a multiplex RT-PCR detection and identification system for Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 128(2), 165–170.CrossRefGoogle Scholar
  13. Mertelik, J., Kloudova, K., Cervena, G., Necekalova, J., Mikulkova, H., Levkanicova, Z., Dedic, P., & Ptacek, J. (2009). First report of Potato spindle tuber viroid (PSTVd) in Brugmansia spp., Solanum jasminoides, Solanum muricatum and Petunia spp. in the Czech Republic. Plant Pathology, 59(2), 392.CrossRefGoogle Scholar
  14. Niblett, C. L., Dickson, E., Fernow, K. H., Horst, R. K., & Zaitlin, M. (1978). Cross protection among four viroids. Virology, 91(1), 198–203.PubMedCrossRefGoogle Scholar
  15. Nielsen, S. L., & Micolaisen, M. (2010). First report of Columnea latent viroid (CLVd) in Gloxinia gymnostoma, G. nematanthodes and G. purpurascens in a botanical garden in Denmark. New Disease Reports, 22, 4.Google Scholar
  16. Olivier, T., Demonty, E., Govers, J., Belkheir, K., & Steyer, S. (2011). First Report of a Brugmansia sp. infected by Tomato apical stunt viroid in Belgium. Plant Disease, 95(4), 495.CrossRefGoogle Scholar
  17. Singh, R. P. (1970). Seed transmission of potato spindle tuber virus in tomato and potato. American Potato Journal, 47(6), 225–227.CrossRefGoogle Scholar
  18. Singh, R. P. (1973). Experimental host range of the potato spindle tuber ‘virus’. American Potato Journal, 50(4), 111–123.CrossRefGoogle Scholar
  19. Singh, R. P., Lakshman, D. K., Boucher, A., & Tavantzis, S. M. (1992). A viroid from Nematanthus wettsteinii plants closely related to the Columnea latent viroid. Journal of General Virology, 73, 2769–2774.PubMedCrossRefGoogle Scholar
  20. Spieker, R. L. (1996). A viroid from Brunfelsia undulata closely related to the Columnea latent viroid. Archives of Virology, 141(10), 1823–1832.PubMedCrossRefGoogle Scholar
  21. Tsushima, T., Murakami, S., Ito, H., He, Y.-H., Raj, P. C. A., & Sano, T. (2011). Molecular characterization of Potato spindle tuber viroid in dahlia. Journal of General Plant Pathology, 77(4), 253–256.CrossRefGoogle Scholar
  22. Verhoeven, J. T. J., Jansen, C. C. C., & Willemen, T. M. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823–831.CrossRefGoogle Scholar
  23. Verhoeven, J. T. J., Jansen, C. C. C., & Roenhorst, J. W. (2007). First report of Tomato chlorotic dwarf viroid in Petunia hybrida from the United States of America. Plant Disease, 91(3), 324.CrossRefGoogle Scholar
  24. Verhoeven, J. T. J., Jansen, C. C. C., & Roenhorst, J. W. (2008a). First report of pospiviroids infecting ornamentals in the Netherlands: Citrus exocortis viroid in Verbena sp., Potato spindle tuber viroid in Brugmansia suaveolens and Solanum jasminoides, and Tomato apical stunt viroid in Cestrum sp. Plant Pathology, 57(2), 399.Google Scholar
  25. Verhoeven, J. T. J., Jansen, C. C. C., & Roenhorst, J. W. (2008b). Streptosolen jamesonii 'Yellow', a new host plant of Potato spindle tuber viroid. Plant Pathology, 57(2), 399.Google Scholar
  26. Verhoeven, J. T. J., Jansen, C. C. C., & Roenhorst, J. W. (2008c). First report of Solanum jasminoides infected by Citrus exocortis viroid in Germany and the Netherlands and Tomato apical stunt viroid in Belgium and Germany. Plant Disease, 92(6), 973.Google Scholar
  27. Verhoeven, J. T. J., Botermans, M., Roenhorst, J. W., Westerhof, J., & Meekes, E. T. M. (2009). First report of Potato spindle tuber viroid in Cape Gooseberry (Physalis peruviana) from Turkey and Germany. Plant Disease, 93(3), 316.CrossRefGoogle Scholar
  28. Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010a). Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources of Potato spindle tuber viroid inoculum for tomato. Plant Pathology, 59(1), 3–12.CrossRefGoogle Scholar
  29. Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010b). First Report of Tomato apical stunt viroid in the symptomless hosts Lycianthes rantonnetii and Streptosolen jamesonii in the Netherlands. Plant Disease, 94(6), 791.CrossRefGoogle Scholar
  30. Walter, B. (1987). Tomato apical stunt. In T. O. Diener (Ed.), The viroids (pp. 321–328). New York: Plenum Press.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  1. 1.NARO Institute of Floricultural ScienceTsukubaJapan
  2. 2.NARO Agricultural Research CenterTsukubaJapan

Personalised recommendations