European Journal of Plant Pathology

, Volume 140, Issue 4, pp 815–828 | Cite as

Verification of serological relationship between two phylogenetically related peanut-infecting Tospovirus species

  • Ya-Chi Kang
  • Shyi-Dong Yeh
  • Chih-Hsuan Liao
  • Wan-Chen Chou
  • Fang-Lin Liu
  • Jia-Hong Dong
  • Tsung-Chi Chen


Based on the serological relationships of nucleocapsid proteins (NPs), a tospovirus species can be classified as a member of a serogroup or a distinct serotype, which greatly helps virus identification and disease diagnosis. Recent studies reported that distinct tospovirus species sharing above 51.8 % amino acid (aa) identity in their NPs may be serologically related. Two phylogenetically related peanut-infecting tospovirus species, Peanut chlorotic fan-spot virus (PCFV) in Taiwan and Peanut yellow spot virus (PYSV) in India, were previously considered as distinct serotypes, since no serological relationship has been established. To verify the serological relationship of PCFV and PYSV, the NP of PCFV was purified from leaf tissues of the infected Chenopodium quinoa plants and used to produce polyclonal antiserum (RAs-PCFV NP) and a monoclonal antibody (MAb-PCFV NP). Polyclonal antiserum to the bacterially expressed NP of PYSV (RAs-PYSV NP) was also prepared. RAs-PCFV NP reacted with the homologous PCFV NP and the bacterial-expressed PYSV NP and tissue extracts of PYSV-infected plants. Reciprocally, RAs-PYSV NP reacted with the homologous bacterial-expressed PYSV NP and the tissue extracts of PYSV-infected or PCFV-infected plants. In addition, MAb-PCFV NP reacted only with the tissue extracts of PCFV-infected plants. Our results demonstrate that PCFV NP is serologically related to PYSV NP and they should be classified as members of a unique serogroup.


Tospovirus Nucleocapsid protein Antibody Serogroup 



We thank the funding from the Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan [101AS-10.3.1-BQ-B1(3)], the National Science Council (NSC-101-2911-I-005-301 and NSC-102-2911-I-005-301), and the Ministry of Education, Taiwan, R.O.C. under the ATU plan.


  1. Chen, C. C., & Chiu, R. J. (1996). A tospovirus infecting peanut in Taiwan. Acta Horticulturae, 431, 57–67.Google Scholar
  2. Chen, C. C., Chen, T. C., Lin, Y. H., Yeh, S. D., & Hsu, H. T. (2005a). A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Disease, 89, 440–445.CrossRefGoogle Scholar
  3. Chen, T. C., Hsu, H. T., Jain, R. K., Huang, C. W., Lin, C. H., Liu, F. L., et al. (2005b). Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector in squash. Journal of Virological Methods, 129, 113–124.PubMedCrossRefGoogle Scholar
  4. Chen, T. C., Huang, C. W., Kuo, Y. W., Liu, F. L., Hsuan Yuan, C. H., Hsu, H. T., et al. (2006). Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology, 96, 1296–1304.PubMedCrossRefGoogle Scholar
  5. Chen, T. C., Lu, Y. Y., Cheng, Y. H., Chang, C. A., & Yeh, S. D. (2008). Melon yellow spot virus in watermelon: a first record from Taiwan. Plant Pathology, 57, 765.CrossRefGoogle Scholar
  6. Chen, T. C., Lu, Y. Y., Cheng, Y. H., Li, J. T., Yeh, Y. C., Kang, Y. C., et al. (2010). Serological relationship between melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Archives of Virology, 155, 1085–1095.PubMedCrossRefGoogle Scholar
  7. Chen, T. C., Lu, Y. Y., Kang, Y. C., Li, J. T., Yeh, Y. C., Kormelink, R., et al. (2011). Detection of eight different Tospovirus species by a monoclonal antibody against the common epitope of NSs protein. Acta Horticulturae, 901, 61–66.Google Scholar
  8. Chu, F. H., Chao, C. H., Peng, Y. C., Lin, S. S., Chen, C. C., & Yeh, S. D. (2001). Serological and molecular characterization of Peanut chlorotic fan-spot virus, a new species of the genus Tospovirus. Phytopathology, 91, 856–863.PubMedCrossRefGoogle Scholar
  9. Ciuffo, M., Tavella, L., Pacifico, D., Masenga, V., & Turina, M. (2008). A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Archives of Virology, 153, 2059–2068.PubMedCrossRefGoogle Scholar
  10. Ciuffo, M., Kurowski, C., Vivoda, E., Copes, B., Masenga, V., Falk, B. W., et al. (2009). A new Tospovirus sp. in cucurbit crops in Mexico. Plant Disease, 93, 467–474.CrossRefGoogle Scholar
  11. Cortes, I., Livieratos, I. C., Derks, A., Peters, D., & Kormelink, R. (1998). Molecular and serological characterization of Iris yellow spot virus, a new and distinct tospovirus species. Phytopathology, 88, 1276–1282.PubMedCrossRefGoogle Scholar
  12. Dayhoff, M. O., Schwartz, R. M., & Orcutt, B. C. (1979). In Atlas of protein sequence and structure, Vol. 5, pp. 345–352. Ed M.O. Dayhoff. National Biomedical Research Foundation: Silver Spring.Google Scholar
  13. de Ávila, A. C., Huguenot, C., Resende, R. O., Kitajima, E. W., Goldbach, R. W., & Peters, D. (1990). Serological differentiation of 20 isolates of tomato spotted wilt virus. Journal of General Virology, 71, 2801–2807.PubMedCrossRefGoogle Scholar
  14. de Avila, A. C., de Haan, P., Kormelink, R., Resende, R. O., Goldbach, R. W., & Peters, D. (1993). Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. Journal of General Virology, 74, 153–159.PubMedCrossRefGoogle Scholar
  15. de Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA segment of tomato spotted wilt virus has an ambisense character. Journal of General Virology, 71, 1001–1007.PubMedCrossRefGoogle Scholar
  16. de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72, 2207–2216.PubMedCrossRefGoogle Scholar
  17. de Oliveira, A. S., Bertran, A. G., Inoue-Nagata, A. K., Nagata, T., Kitajima, E. W., & Oliveira Resende, R. (2011). An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus. Virus Genes, 43, 385–389.PubMedCrossRefGoogle Scholar
  18. de Oliveira, A. S., Melo, F. L., Inoue-Nagata, A. K., Nagata, T., Kitajima, E. W., & Oliveira Resende, R. (2012). Characterization of Bean necrotic mosaic virus: A member of a novel evolutionary lineage within the genus Tospovirus. PLoS ONE, 7, e38634.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Felsenstein, J. (1989). PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164–166.Google Scholar
  20. Goldbach, R., & Kuo, G. (1996). Introduction. Acta Horticulturae, 431, 21–26.Google Scholar
  21. Goldbach, R., & Peters, D. (1996). Molecular and biological aspects of tospoviruses. In The Bunyaviridae, pp. 129–157. Ed R.M. Elliott. New York, NY: Plenum Press.Google Scholar
  22. Hassani-Mehraban, A., Saaijer, J., Peters, D., Goldbach, R., & Kormelink, R. (2005). A new tomato-infecting tospovirus from Iran. Phytopathology, 95, 852–858.PubMedCrossRefGoogle Scholar
  23. Heinze, C., Roggero, P., Sohn, M., Vaira, A. M., Masenga, V., & Adam, G. (2000). Peptide-derived broad-reacting antisera against tospovirus NSs-protein. Journal of Virological Methods, 89, 137–146.PubMedCrossRefGoogle Scholar
  24. Hsu, H. T., Aebig, J., & Rochow, W. F. (1984). Differences among monoclonal antibodies to Barley yellow dwarf viruses. Phytopathology, 74, 600–605.CrossRefGoogle Scholar
  25. Hsu, H. T., Ueng, P. P., Chu, F. H., Ye, Z., & Yeh, S. D. (2000). Serological and molecular characterization of a high temperature-recovered virus belonging to Tospovirus serogroup IV. Journal of General Plant Pathology, 66, 167–175.CrossRefGoogle Scholar
  26. Jan, F. J., Chen, T. C., & Yeh, S. D. (2003). Occurrence, importance, taxonomy, and control of thrips-borne tospoviruses. In Advances in Plant disease Management, pp. 399–421. Eds H.C. Huang and S.N. Acharya. Trivandrum, India: ResearchSignpost.Google Scholar
  27. Kato, K., Hanada, K., & Kameya-Iwaki, M. (2000). Melon yellow spot virus: a distinct species of the genus tospovirus isolated from melon. Phytopathology, 90, 422–426.PubMedCrossRefGoogle Scholar
  28. King, A. M. Q., Adams, M. J., Carstens, E. B., & Lefkowitz, E. J. (2011). Virus taxonomy: ninth report of the international committeeon taxonomy of viruses. Amsterdam: Elsevier Academic Press.Google Scholar
  29. Kormelink, R., de Haan, P., Meurs, C., Peters, D., & Goldbach, R. (1992). The nucleotide sequencw of the M RNA segments of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. Journal of General Virology, 73, 2795–2804.PubMedCrossRefGoogle Scholar
  30. Law, M. D., & Moyer, J. W. (1990). A tomato spotted wilt-like virus with a serologically distinct N protein. Journal of General Virology, 71, 933–938.CrossRefGoogle Scholar
  31. Law, M. D., Speck, J., & Moyer, J. W. (1992). The M RNA of impatiens necrotic spot tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology, 188, 732–741.PubMedCrossRefGoogle Scholar
  32. Li, J. T., Yeh, Y. C., Yeh, S. D., Raja, J. A. J., Rajagopalan, P. A., Liu, L. Y., et al. (2011). Complete genomic sequence of watermelon bud necrosis virus. Archives of Virology, 156, 359–362.PubMedCrossRefGoogle Scholar
  33. Lin, Y. H., Chen, T. C., Hsu, H. T., Liu, F. L., Chu, F. H., Chen, C. C., et al. (2005). Serological comparison and molecular characterization for verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology, 95, 1482–1488.PubMedCrossRefGoogle Scholar
  34. Mohamed, N. A. (1981). Isolation and characterization of subviral structures from tomato spotted wilt virus. Journal of General Virology, 53, 197–208.CrossRefGoogle Scholar
  35. Mohamed, N. A., Randles, J. W., & Francki, R. I. B. (1973). Protein composition of tomato spotted wilt virus. Virology, 56, 12–21.PubMedCrossRefGoogle Scholar
  36. Pang, S. Z., Slightom, J. L., & Gonsalves, D. (1993). The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathology, 83, 728–733.CrossRefGoogle Scholar
  37. Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141, 219–236.PubMedCrossRefGoogle Scholar
  38. Peng, J. C., Yeh, S. D., Huang, L. H., Li, J. T., Cheng, Y. F., & Chen, T. C. (2011). Emerging threat of thrips-borne Melon yellow spot virus on melon and watermelon in Taiwan. European Journal of Plant Pathology, 130, 205–214.CrossRefGoogle Scholar
  39. Reddy, D. V. R., Sudarshana, M. R., Ratna, A. S., Reddy, A. S., Amin, P. W., Kumar, I. K., & Murthy, A. K. (1991). The occurrence of yellow spot virus, a member of tomato spotted wilt virus group, on peanut (Arachis hypogaea L) in India. In Virus-Thrips-Plant interactions of tomato spotted wilt virus, pp. 77–88. Eds H.T. Hsu and R.H. Lawson. Proceedings of the USDA Agricultural Research Service, ARS-87.Google Scholar
  40. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedGoogle Scholar
  41. Satyanarayana, T., Gowda, S., Reddy, K. L., Mitchell, S. E., Dawson, W. O., & Reddy, D. V. R. (1998). Peanut yellow spot virus is a member of a new serogroup of Tospovirus genus based on small (S) RNA sequence and organization. Archives of Virology, 143, 353–364.PubMedCrossRefGoogle Scholar
  42. Seepiban, C., Gajanandana, O., Attathom, T., & Attathom, S. (2011). Tomato necrotic ringspot virus, a new tospovirus isolated in Thailand. Archives of Virology, 156, 263–274.PubMedCrossRefGoogle Scholar
  43. van Knippenberg, I., Goldbach, R., & Peters, D. (2002). Purified Tomato spotted wilt virus particles support both genome replication and transcription in vitro. Virology, 303, 278–286.PubMedCrossRefGoogle Scholar
  44. Yeh, S. D., & Gonsalves, D. (1984). Purification and immunological analysis of cylindrical-inclusion protein induced by Papaya ringspot virus and Watermelon mosaic virus I. Phytopathology, 74, 1273–1278.CrossRefGoogle Scholar
  45. Yeh, S. D., Cheng, Y. H., Jih, C. L., Chen, C. C., & Chen, M. J. (1988). Identification of tomato spotted infecting horn melon and watermelon. Plant Protection Bulletin, 30, 319–320.Google Scholar
  46. Yeh, S. D., Chao, C. H., Cheng, Y. H., & Chen, C. C. (1996). Serological comparison of four distinct tospoviruses by polyclonal antibodies to purified nucleocapsid proteins. Acta Horticulturae, 431, 122–134.Google Scholar
  47. Zhou, J., Kantartzi, S. K., Wen, R. H., Newman, M., Hajimorad, M. R., Rupe, J. C., et al. (2011). Molecular characterization of a new tospovirus infecting soybean. Virus Genes, 43, 289–295.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Ya-Chi Kang
    • 1
    • 2
  • Shyi-Dong Yeh
    • 2
    • 3
  • Chih-Hsuan Liao
    • 1
  • Wan-Chen Chou
    • 1
  • Fang-Lin Liu
    • 2
  • Jia-Hong Dong
    • 4
  • Tsung-Chi Chen
    • 1
    • 5
  1. 1.Department of BiotechnologyAsia UniversityTaichungTaiwan
  2. 2.Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
  3. 3.NCHU-UCD Plant and Food Biotechnology Program, Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
  4. 4.Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation of Ministry of Agriculture, Biotechnology and Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingChina
  5. 5.Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan

Personalised recommendations