Skip to main content
Log in

Quantitative methods for assessment of the impact of different crops on the inoculum density of Rhizoctonia solani AG2-2IIIB in soil

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Rhizoctonia solani AG2-2IIIB is the causal agent of late crown and root rot in sugar beet. In a 4-year field study we analyzed the impact of different plant residue management systems of sugar beet and maize as well as of growing wheat (non-host) and different maize varieties on the soil inoculum density of R. solani. Sugar beet remains were either tilled or removed from the field; maize was then grown during the two following years and also tilled or removed. The soil inoculum potential of R. solani was studied using three different on- and off-site monitoring systems. A monthly assessment of root damage indices of maize and sugar beet and broad bean as an indicator plant was carried out. In addition, an indirect quantitative real-time PCR assay using quinoa seed baits was developed to analyze field soil samples for R. solani AG2-2 soil concentration at the end of each year. The results show that the non-host wheat as a pre-crop to sugar beet reduced the Rhizoctonia inoculum potential in the soil significantly. Additionally, the incorporation of host plant debris (sugar beet + maize) into the soil increased the Rhizoctonia soil inoculum potential and the incidence of sugar beet rot. Although the maize genotypes’ susceptibility to R. solani differed, their plant debris did not significantly influence growth and survival of R. solani in the soil. This work describes methods that allow elucidating the effect of agricultural practice on Rhizoctonia levels in the soil and on disease development in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anees, M., Edel-Hermann, V., & Steinberg, C. (2010). Build up of patches caused by Rhizoctonia solani. Soil Biology and Biochemistry, 42, 1661–1672.

    Article  CAS  Google Scholar 

  • Bell, K. S., Roberts, J., Verrall, S., Cullen, D. W., Williams, N. A., Harrison, J. G., Toth, I. K., Cooke, D. E. L., Duncan, J. M., & Claxton, J. R. (1999). Detection and quantification of Spongospora subterranea f. sp. subterranea in soils and on tubers using specific PCR primers. European Journal of Plant Pathology, 105, 905–915.

    Article  CAS  Google Scholar 

  • Bonants, P. J. M., van Gent-Pelzer, M. P. E., Hooftman, R., Cooke, D. E. L., Guy, D. C., & Duncan, J. M. (2004). A combination of baiting and different PCR formats, including measurement of real-time quantitative fluorescence, for the detection of Phytophthora fragariae in strawberry plants. European Journal of Plant Pathology, 110, 689–702.

    Article  CAS  Google Scholar 

  • Brierley, J. L., Stewart, J. A., & Lees, A. K. (2009). Quantifying potato pathogen DNA in soil. Applied Soil Ecology, 41, 234–238.

    Article  Google Scholar 

  • Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74, 738–744.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buddemeyer, J., Pfähler, B., Petersen, J., & Märländer, B. (2004). Genetic variation in susceptibility of maize to Rhizoctonia solani (AG 2-2IIIB)—symptoms and damage under field conditions in Germany. Journal of Plant Diseases and Protection, 111, 521–533.

    CAS  Google Scholar 

  • Budge, G. E., Shaw, M. W., Colyer, A., Pietravalle, S., & Boonham, N. (2009). Molecular tools to investigate Rhizoctonia solani distribution in soil. Plant Pathology, 58, 1071–1080.

    Article  CAS  Google Scholar 

  • Buhre, C., Kluth, C., Bürcky, K., Märländer, B., & Varrelmann, M. (2009). Integrated control of root and crown rot in sugar beet: combined effects of cultivar, crop rotation, and soil tillage. Plant Disease, 93, 155–161.

    Article  Google Scholar 

  • Büttner, G., Führer Ithurrart, M. E., & Buddemeyer, J. (2002). Root and crown rot Rhizoctonia solani: distribution, economic importance and concepts of integrated control. Beiträge zur 5. Göttinger Zuckerrübentagung. Zuckerindustrie, 127, 856–866.

    Google Scholar 

  • Cohen, M. F., Yamasaki, H., & Mazzola, M. (2005). Brassica napus seed meal amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biology & Biochemistry, 37, 1215–1227.

    Article  CAS  Google Scholar 

  • Croteau, G. A., & Zibilske, L. M. (1998). Influence of papermill processing residuals on saprophytic growth and disease caused by Rhizoctonia solani. Applied Soil Ecology, 10, 103–115.

    Article  Google Scholar 

  • Cubeta, M. A., & Vilgalys, R. (1997). Population biology of the Rhizoctonia solani complex. Phytopathology, 87, 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Dhingra, O. D., Costa, M. L. N., Silva, G. J., & Mizubuti, E. S. G. (2004). Essential oil of mustard to control Rhizoctonia solani causing seedling damping off and seedling blight in nursery. Fitopatologia Brasileira, 24, 683–686.

    Google Scholar 

  • Duggar, B. M. (1915). Rhizoctonia crocorum (Pers.) DC. and R. solani Kühn (Corticium vagum B. & C.) with notes on other species. Annals of the Missouri Botanical Garden, 2, 403–458.

    Article  Google Scholar 

  • Engelkes, C. A., & Windels, C. E. (1996). Susceptibility of sugar beet and beans to Rhizoctonia solani AG-2-2 IIIB and AG-2-2 IV. Plant Disease, 80, 1413–1417.

    Article  Google Scholar 

  • Garbeva, P., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243–270.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A. J., Büttner, A. G., Guitiérrez, H., Heijbroek, W., Ioannides, P., Nihlgaard, M., Richard Molard, M., Panella, L., Rossi, V., Rösner, H., Schneider, J. H. M., & Wouters, A. (2001). Integrated control of Rhizoctonia root rot—first results of an I.I.R.B. trial series, In Proc. 64th IIRB Congr (pp. 397–400).

  • Garrett, K. A., Forbes, G. A., Savary, S., Skelsey, P., Sparks, A. H., Valdivia, C., van Bruggen, A. H. C., Willocquet, L., Djurle, A., Duveiller, E., Eckersten, H., Pande, S., Vera Cruz, C., & Yuen, J. (2011). Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathology, 60, 15–30.

    Article  Google Scholar 

  • Gilligan, C. A., Simons, S. A., & Hide, G. A. (1996). Inoculum density and spatial pattern of Rhizoctonia solani in field plots of Solanum tuberosum: effects of cropping frequency. Plant Pathology, 45, 232–244.

    Article  Google Scholar 

  • Gransee, A. (2002). Effects of root exudates on nutrient availability in the rhizosphere. In W. J. Horst, M. K. Schenk, A. Bürkert, N. Claassen, H. Flessa, W. B. Frommer, et al. (Eds.), Plant nutrition, developments in plant and soil sciences (pp. 626–627). Dordrecht: Springer.

    Google Scholar 

  • Kasuya, M., Olivier, A. R., Ota, Y., Tojo, M., Honjo, H., & Fukui, R. (2006). Induction of soil suppressiveness against Rhizoctonia solani by incorporation of dried plant residues into soil. Phytopathology, 96, 1372–1379.

    Article  PubMed  Google Scholar 

  • Kernaghan, G., Reeleder, R. D., & Hoke, S. M. T. (2007). Quantification of Cylindrocarpon destructans f. sp. panacis in soils by real-time PCR. Plant Pathology, 56, 508–516.

    Article  CAS  Google Scholar 

  • Kluth, C., & Varrelmann, M. (2010). Maize genotype susceptibility to Rhizoctonia solani and its effect on sugar beet crop rotations. Crop Protection, 29, 230–238.

    Article  Google Scholar 

  • Larsen, R. C., Hollingsworth, C. R., Vandemark, G. J., Gritsenko, M. A., & Gray, F. A. (2002). A rapid method using PCR-based SCAR markers for the detection and identification of Phoma sclerotioides: the cause of brown root rot disease of Alfalfa. Plant Disease, 86, 928–932.

    Article  CAS  Google Scholar 

  • Lees, A. K., Cullen, D. W., Sullivan, L., & Nicolson, M. J. (2002). Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil. Plant Pathology, 51, 293–302.

    Article  CAS  Google Scholar 

  • Liu, Z., & Sinclair, J. B. (1991). Isolates of Rhizoctonia solani anastomosis group 2–2 pathogenic to soybean. Plant Disease, 75, 682–687.

    Article  Google Scholar 

  • Martin-Laurent, F., Philippot, L., Hallet, S., Chaussod, R., Germon, J. C., Soulas, G., & Catroux, G. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology, 67, 2354–2359.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leeuwenhoek, 81, 557–564.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. N., Bryant, J. E., Madsen, E. L., & Ghiorse, W. C. (1999). Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology, 65, 4715–4724.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neate, S. M. (1987). Plant debris in soil as a source of inoculum of Rhizoctonia in wheat. Transactions of the British Mycological Society, 88, 157–162.

    Article  Google Scholar 

  • Neate, S., & Schneider, J. H. M. (1996). Sampling and quantification of Rhizoctonia solani in soil. In B. Sneh, S. Jabaji-Hare, S. M. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 185–195). Dordrecht: Springer.

    Google Scholar 

  • Okubara, P. A., Schroeder, K. L., & Paulitz, T. C. (2008). Identification and quantification of Rhizoctonia solani and R. oryzae using real time polymerase chain reaction. Phytopathology, 98, 837–847.

    Article  PubMed  CAS  Google Scholar 

  • Ophel-Keller, K., McKay, A., Hartley, D., Curran, H., & Curran, J. (2008). Development of a routine DNA-based testing service for soilborne diseases in Australia. Australasian Plant Pathology, 37, 243–253.

    Article  CAS  Google Scholar 

  • Papavizas, G. C., & Davey, C. B. (1962). Isolation and pathogenicity of Rhizoctonia saprophytically existing in soil. Phytopathology, 52, 834–840.

    Google Scholar 

  • Paulitz, T. C., & Schroeder, K. L. (2005). A new method for the quantification of Rhizoctonia solani and R. oryzae from soil. Plant Disease, 89, 767–772.

    Article  Google Scholar 

  • Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., & Steinberg, C. (2006). Response of soil microbial communities to compost amendments. Soil Biology & Biochemistry, 38, 460–470.

    Article  Google Scholar 

  • Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H., & Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339, 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Ruppel, E. G. (1991). Survival of Rhizoctonia solani in fallow field soil and buried sugar beet roots at three depths. Journal of Sugar Beet Research, 28, 141–153.

    Article  Google Scholar 

  • Rush, C. M., & Winter, S. R. (1990). Influence of previous crops on Rhizoctonia root and crown rot of sugar beet. Plant Disease, 74, 421–425.

    Article  Google Scholar 

  • Sayler, R. J., & Yang, Y. (2007). Detection and quantification of Rhizoctonia solani AG-1 IA, the rice sheath blight pathogen, in rice using real-time PCR. Plant Disease, 91, 1663–1668.

    Article  CAS  Google Scholar 

  • Sneh, B., Katan, J., Henis, Y., & Wahl, I. (1966). Methods for evaluating inoculum density of Rhizoctonia in naturally infected soil. Phytopathology, 56, 74–78.

    Google Scholar 

  • Sumner, D. R. (1996). Sclerotia formation by Rhizoctonia species and their survival. In B. Sneh, S. Jabaji-Hare, S. M. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 207–215). Dordrecht: Springer.

    Google Scholar 

  • Sumner, D. R., & Bell, D. K. (1982). Root diseases induced in corn by Rhizoctonia solani and Rhizoctonia zeae. Phytopathology, 72, 86–91.

    Article  Google Scholar 

  • Termorshuizen, A. J., van Rijn, E., van der Gaag, D. J., Alabouvette, C., Chen, Y., Lagerlöf, J., Malandrakis, A. A., Paplomatas, E. J., Rämert, B., Ryckeboer, J., Steinberg, C., & Zmora-Nahum, S. (2006). Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biology & Biochemistry, 38, 2461–2477.

    Article  CAS  Google Scholar 

  • Thornton, C. R., O’Neill, T. M., Hilton, G., & Gilligan, C. A. (1999). Detection and recovery of Rhizoctonia solani in naturally infested glasshouse soils using a combined baiting, double monoclonal antibody ELISA. Plant Pathology, 48, 627–634.

    Article  Google Scholar 

  • Windels, C. E., & Brantner, J. R. (2004). Previous crop influences Rhizoctonia on sugarbeet. Sugarbeet Research and Extension Reports, 35, 227–231.

    Google Scholar 

  • Windels, C. E., & Brantner, J. R. (2007). Rhizoctonia inoculum and rotation crop effects on a following sugarbeet crop. Sugarbeet Research and Extension Reports, 37, 182–194.

    Google Scholar 

  • Woodhall, J. W., Webb, K. M., Giltrap, P. M., Adams, I. P., Peters, J. C., Budge, G. E., & Boonham, N. (2012). A new large scale soil DNA extraction procedure and real-time PCR assay for the detection of Sclerotium cepivorum in soil. European Journal of Plant Pathology, 134, 467–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by the Bavarian State Department for Food, Agriculture and Forestry (StMELF). We also thank Gerald Wagner, Georg Simeth, Rudolf Apfelbeck (ARGE Regensburg) and Christine Dircks (IfZ, Göttingen) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nechwatal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 14 kb)

High resolution image (TIFF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boine, B., Renner, AC., Zellner, M. et al. Quantitative methods for assessment of the impact of different crops on the inoculum density of Rhizoctonia solani AG2-2IIIB in soil. Eur J Plant Pathol 140, 745–756 (2014). https://doi.org/10.1007/s10658-014-0506-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0506-6

Keywords

Navigation