European Journal of Plant Pathology

, Volume 140, Issue 2, pp 291–300 | Cite as

Antibacterial activity of petroleum ether fraction from Laminaria japonica extracts against Clavibacter michiganensis subsp. sepedonicus

  • Jin Cai
  • Jia Feng
  • Feipeng Wang
  • Qiufeng Xu
  • Shulian Xie
Original Research


We prepared an ethanol extract from Laminaria japonica, and obtained five fractions from the extract using various solvents. We investigated the antibacterial activities of the fractions against Clavibacter michiganensis subsp. sepedonicus (Spieckermann & Kotthoff) Davis et al., the causal agent of bacterial ring rot of potato (BRR). Among all the fractions, the petroleum ether fraction showed the strongest (P < 0.05) antibacterial activity against C. michiganensis subsp. sepedonicus. We analyzed the petroleum ether fraction to detect the components with antibacterial activity, and identified 24 compounds. The main constituents of the petroleum ether extract were esters (35.28 %) and acids (44.84 %). Cell membrane permeability assays, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that the petroleum ether fraction caused drastic ultrastructural changes in the cells of the pathogen. The petroleum ether fraction caused envelope disruption, cell deformation, the separation of the cell wall from the cell membrane, and the formation of vacuoles. These results clearly indicate that the petroleum ether fraction obtained from L. japonica shows strong antibacterial activity against the causal agent of BRR.


Laminaria japonica Petroleum ether fraction Clavibacter michiganensis subsp. sepedonicus Antibacterial activity Chemical composition Ultrastructural changes 



We thank Edanz Editing Company for critical reviews of the manuscript and editorial assistance with the English.


  1. Akhtar, Y., Yeoung, Y. R., & Isman, M. B. (2008). Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochemistry Reviews, 7(1), 77–88.CrossRefGoogle Scholar
  2. Alakomi, H. L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., & Helander, I. M. (2000). Lactic acid permeabilizes Gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), 2001–2005.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Axe, D. D., & Bailey, J. E. (1995). Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coil. Biotechnology and Bioengineering, 47(1), 8–19.PubMedCrossRefGoogle Scholar
  4. Bajpai, V. K., Shukla, S., & Kang, S. C. (2008). Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bioresource Technology, 99(18), 8903–8908.PubMedCrossRefGoogle Scholar
  5. Bajpai, V. K., Sharma, A., & Baek, K. H. (2013). Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, 32(2), 582–590.CrossRefGoogle Scholar
  6. Barnard, M., Padgitt, M., & Uri, N. D. (1997). Pesticide use and its measurement. International Pest Control, 39, 161–164.Google Scholar
  7. Bendimerad, N., Taleb Bendiab, S. A., Benabadji, A. B., Fernandez, X., Valette, L., & Lizzani-Cuvelier, L. (2005). Composition and antibacterial activity of Pseudocytisus integrifolius (Salisb.) essential oil from Algeria. Journal of Agricultural and Food Chemistry, 53(8), 2947–2952.PubMedCrossRefGoogle Scholar
  8. Blažević, I., Radonić, A., Mastelić, J., Zekić, M., Skočibušić, M., & Maravić, A. (2010). Hedge mustard (Sisymbrium officinale): chemical diversity of volatiles and their antimicrobial activity. Chemistry & Biodiversity, 7(8), 2023–2034.CrossRefGoogle Scholar
  9. Brul, S., & Coote, P. (1999). Preservative agents in foods: mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50(1–2), 1–17.PubMedCrossRefGoogle Scholar
  10. Chao, L. K., Hua, K. F., Hsu, H. Y., Cheng, S. S., Liu, J. Y., & Chang, S. T. (2005). Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry, 53(18), 7274–7278.PubMedCrossRefGoogle Scholar
  11. Chen, Y., & Dai, G. (2012). Antifungal activity of plant extracts against Colletotrichum lagenarium, the causal agent of anthracnose in cucumber. Journal of the Science of Food and Agriculture, 92(9), 1937–1943.PubMedCrossRefGoogle Scholar
  12. Chen, Y., Yue, X. L., & Wang, Y. C. (2010). Features and integrated management of ring-rot in potato. Journal of Shanxi Agricultural Sciences, 38(7), 140–141.Google Scholar
  13. Chen, L., Liu, S., Chen, X., & Peng, L. (2011). Chemical composition and antibacterial activity of the essential oils from Dalbergia odorifera T Chen. Chinese Journal of Tropical Crops, 32(6), 1165–1167.Google Scholar
  14. Cherrington, C. A., Hinton, M., Mead, G. C., & Chopra, I. (1991). Organic acids: chemistry, antibacterial activity and practical application. Advances in Microbial Physiology, 32, 87–108.PubMedCrossRefGoogle Scholar
  15. Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Kim, H. W., Lee, M. A., et al. (2012). Effects of Laminaria japonica on the physico-chemical and sensory characteristics of reduced-fat pork patties. Meat Science, 91(1), 1–7.PubMedCrossRefGoogle Scholar
  16. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.PubMedCentralPubMedGoogle Scholar
  17. De Boer, S. H., & Slack, S. (1984). Current status and prospects for detecting and controlling bacterial ring rot of potatoes in North America. Plant Disease, 68, 841–844.CrossRefGoogle Scholar
  18. Deng, X., Qin, S., Zhang, Q., Jiang, P., Cui, Y., & Li, X. (2009). Microprojectile bombardment of Laminaria japonica gametophytes and rapid propagation of transgenic lines within a bubble-column bioreactor. Plant Cell Tissue and Organ Culture, 97(3), 253–261.CrossRefGoogle Scholar
  19. Derbalah, A. S., Dewir, Y. H., & El-Sayed, A. E. B. (2012). Antifungal activity of some plant extracts against sugar beet damping-off caused by Sclerotium rolfsii. Annals of Microbiology, 62(3), 1021–1029.CrossRefGoogle Scholar
  20. Devi, P. K., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107–115.PubMedCrossRefGoogle Scholar
  21. Elbadri, G. A., Lee, D. W., Park, J. C., Yu, H. B., & Choo, H. Y. (2008). Evaluation of various plant extracts for their nematicidal efficacies against juveniles of Meloidogyne incognita. Journal of Asia-Pacific Entomology, 11(2), 99–102.CrossRefGoogle Scholar
  22. Glombitza, K. W. (1979). Antibiotics from algae. In H. A. Hoppe, T. Levring, & Y. Tanaka (Eds.), Marine algae in pharmaceutical science (pp. 303–342). Berlin: Walter de Gruyter.Google Scholar
  23. Go, H., Hwang, H. J., & Nam, T. J. (2010). A glycoprotein from Laminaria japonica induces apoptosis in HT-29 colon cancer cells. Toxicology in Vitro, 24(6), 1546–1553.PubMedCrossRefGoogle Scholar
  24. Guo, D., Yang, S., Zhang, X., & Shen, H. (2004). Primary research on the antifungal compositions in the root of Stellera chamaejasme. Journal of Gansu Agricultural University, 39(3), 325–329.Google Scholar
  25. Harish, S., Saravanakumar, D., Radjacommare, R., Ebenezar, E. G., & Seetharaman, K. (2008). Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl, 53, 555–567.CrossRefGoogle Scholar
  26. Ifesan, B. O., Joycharat, N., & Voravuthikunchai, S. P. (2009). The mode of antistaphylococcal action of Eleutherine americana. FEMS Immunology and Medical Microbiology, 57(2), 193–201.PubMedCrossRefGoogle Scholar
  27. Kagale, S., Marimuthu, T., Thayumanavan, B., Nandakumar, R., & Samiyappan, R. (2004). Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. Physiological and Molecular Plant Pathology, 65(2), 91–100.CrossRefGoogle Scholar
  28. Karabay-Yavasoglu, N. U., Sukatar, A., Ozdemir, G., & Horzum, Z. (2007). Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytotherapy Research, 21(2), 153–156.PubMedCrossRefGoogle Scholar
  29. Kim, Y. H., Kim, J. H., Jin, H. J., & Lee, S. Y. (2013). Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms. Anaerobe, 21, 34–38.PubMedCrossRefGoogle Scholar
  30. Knight, S. C., Anthony, V. M., Brady, A. M., Greenland, A. J., Heaney, S. P., Murray, D. C., et al. (1997). Rationale and perspectives on the development of fungicides. Annual Review of Phytopathology, 35, 349–372.PubMedCrossRefGoogle Scholar
  31. Li, N., Zhang, Q., & Song, J. (2005). Toxicological evaluation of fucoidan extracted from Laminaria japonica in Wistar rats. Food and Chemical Toxicology, 43(3), 421–426.PubMedCrossRefGoogle Scholar
  32. Li, L. Y., Li, L. Q., & Guo, C. H. (2010). Evaluation of in vitro antioxidant and antibacterial activities of Laminaria japonica polysaccharides. Journal of Medicinal Plants Research, 4(21), 2194–2198.Google Scholar
  33. Lin, J. B., Zhao, H. Q., Hang, B., & Aisa, H. A. (2013). Antimicrobial and antitumor activities of crude extracts and isolated compounds from euphorbia humifusa. Asian Journal of Chemistry, 25(7), 3957–3960.Google Scholar
  34. Luo, S., You, X., Ding, C., Li, Z., Lin, G., Yu, Z., et al. (2012). Antimicrobial activities and chemical compositions of Dictyophora indusia fisscher and Dictyophora echinovolvata. Science and Technology of Food Industry, 21, 70–73.Google Scholar
  35. Marino, M., Bersani, C., & Comi, G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. International Journal of Food Microbiology, 67(3), 187–195.PubMedCrossRefGoogle Scholar
  36. Meillisa, A., Siahaan, E. A., Park, J. N., Woo, H. C., & Chun, B. S. (2013). Effect of subcritical water hydrolysate in the brown seaweed Saccharina japonica as a potential antibacterial agent on food-borne pathogens. Journal of Applied Phycology, 25(3), 763–769.CrossRefGoogle Scholar
  37. Michielin, E. M. Z., Salvador, A. A., Riehl, C. A. S., Smânia, A., Jr., Smânia, E. F. A., & Ferreira, S. R. S. (2009). Chemical composition and antibacterial activity of Cordia verbenacea extracts obtained by different methods. Bioresource Technology, 100(24), 6615–6623.PubMedCrossRefGoogle Scholar
  38. Muthukumar, A., Eswaran, A., Nakkeeran, S., & Sangeetha, G. (2010). Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping-off. Crop Protection, 29(12), 1483–1488.CrossRefGoogle Scholar
  39. Pastrik, K. H. (2000). Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by multiplex PCR with coamplification of host DNA. European Journal of Plant Pathology, 106(2), 155–165.CrossRefGoogle Scholar
  40. Perminow, J. I. S., Akselsen, I. L. W., Borowski, E., Ruden, Ø., & Grønås, W. (2012). Potato ring rot in norway: occurrence and control. Potato Research, 55, 241–247.CrossRefGoogle Scholar
  41. Pieterse, B., Leer, R. J., Schuren, F. H., & van der Werf, M. J. (2005). Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology, 151, 3881–3894.PubMedCrossRefGoogle Scholar
  42. Qiu, Y. E. (2004). The occurrence and control of ring-rot in potato. Xinjiang Agricultural Sciences, 41, 88–89.Google Scholar
  43. Rasch, M. (2002). The influence of temperature, salt and pH on the inhibitory effect of reuterin on Escherichia coli. International Journal of Food Microbiology, 72(3), 225–231.PubMedCrossRefGoogle Scholar
  44. Roe, A. J., O’byrne, C., Mclaggan, D., & Booth, I. R. (2002). Inhibition of Escherichia coli growth by acetic by acetic acid: a problem with methionine biosythesis and homocysteine toxicity. Microbiology, 148, 2215–2222.PubMedGoogle Scholar
  45. Schmutterer, H. (1990). Properties and potential of natural pesticides from the neem tree Azadirachta indica. Annual Review Entomology, 35, 271–297.CrossRefGoogle Scholar
  46. Secor, G. A., De Buhr, L., & Gudmestad, N. C. (1987). Chemical sanitation for bacterial ring rot control. American Potato Journal, 64, 699–700.CrossRefGoogle Scholar
  47. Shao, X., Cheng, S., Wang, H., Yu, D., & Mungai, C. (2013). The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. Journal of Applied Microbiology, 114(6), 1642–1649.PubMedCrossRefGoogle Scholar
  48. Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiology and Molecular Biology Reviews, 59(2), 201–222.Google Scholar
  49. Singh, G., Maurya, S., Catalan, C., & de Lampasona, M. P. (2004). Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. Journal of Agricultural and Food Chemistry, 52(11), 3292–3296.PubMedCrossRefGoogle Scholar
  50. Smânia, A., Jr., Monache, F. D., Smânia, E. F. A., & Cuneo, R. S. (1999). Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) fruit body. International Journal of Medicinal Mushrooms, 1(4), 325–330.CrossRefGoogle Scholar
  51. Smith, N. C., Hennessy, J., & Stead, D. E. (2001). Repetitive sequence-derived PCR profiling using the BOX-A1R primer for rapid identification of the plant pathogen Clavibacter michiganensis subspecies sepedonicus. European Journal of Plant Pathology, 107(7), 739–748.CrossRefGoogle Scholar
  52. Tabanca, N., Demirci, B., Baser, K. H. C., Aytac, Z., Ekici, M., Khan, S. I., et al. (2006). Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita essential oils. Journal of Agricultural and Food Chemistry, 54(18), 6593–6597.PubMedCrossRefGoogle Scholar
  53. Tegegne, G., & Pretorius, J. C. (2007). In vitro and in vivo antifungal activity of crude extracts and powdered dry material from Ethiopian wild plants against economically important plant pathogens. BioControl, 52(6), 877–888.CrossRefGoogle Scholar
  54. Tseng, C. K. (2001). Algal biotechnology industries and research activities in China. Journal of Applied Phycology, 13(4), 375–380.CrossRefGoogle Scholar
  55. Urbanek, A., Szadziewski, R., Stepnowski, P., Boros-Majewska, J., Gabriel, I., Dawgul, M., et al. (2012). Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae). Journal of Insect Physiology, 58(9), 1265–1276.PubMedCrossRefGoogle Scholar
  56. Vukovic, N., Sukdolak, S., Solujic, S., & Niciforovic, N. (2009). Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia. Journal of Medicinal Food, 12(2), 435–441.PubMedCrossRefGoogle Scholar
  57. Zhen, Y., Jiang, H. X., & Lin, X. P. (2004). Chemical analysis of lipid compound and its antibacterial and antifungal activities in Pachydictyon coriaceum. Marine Sciences, 28(10), 42–44.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Jin Cai
    • 1
  • Jia Feng
    • 1
  • Feipeng Wang
    • 1
  • Qiufeng Xu
    • 1
  • Shulian Xie
    • 1
  1. 1.School of Life ScienceShanxi UniversityTaiyuanChina

Personalised recommendations