European Journal of Plant Pathology

, Volume 140, Issue 1, pp 53–67 | Cite as

Morphological and molecular characterisation of Pratylenchus oleae n. sp. (Nematoda: Pratylenchidae) parasitizing wild and cultivated olives in Spain and Tunisia

  • Juan E. Palomares-Rius
  • Ilhem Guesmi
  • Najet Horrigue-Raouani
  • Carolina Cantalapiedra-Navarrete
  • Gracia Liébanas
  • Pablo Castillo


A new mono-sexual root-lesion nematode species, Pratylenchus oleae n. sp., parasitizing roots of olive plants cv. Koroneiki in commercial fields at Ouled Chamekh (central Tunisia), and wild and cultivated olive (cv. Picual) plants in Agua Amarga (southern Spain) is described. The new species is characterised by the female having a lip region slightly offset and bearing three annuli, stylet 16.5 (14.5-17.0) μm long, with prominent rounded knobs, pharyngeal overlapping rather long (22–36) μm, lateral fields areolated and with four incisures and diagonal lines in middle band, spermatheca rounded but non-functional, tail short, conoid-rounded to subcylindrical, usually annulated terminus, males unknown, and a specific D2-D3, ITS1, 18S-rRNA, hsp90 and COI sequences. Morphologically this species is related to P. cruciferus, P. delattrei, and P. kumamotoensis. The results of the phylogenetic analysis based on sequences of the D2-D3 expansion regions of 28S, partial 18S and ITS rRNA genes confirmed the close relationship of P. oleae n. sp. with P. dunensis, P. penetrans, P. pinguicaudatus, from which was clearly separated. A PCR-based diagnostic assay was also developed for identification of P. oleae n. sp. using the species-specific primers Poleae_fw1_4 and Poleae_rv1 that amplify a 547-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA, which clearly separate from other root-lesion nematodes damaging olive such as P. penetrans and P. vulnus.


Bayesian inference Cytochrome c oxidase subunit 1 (COIHeat shock protein 90 (hsp90Maximum likelihood Olea europaea subsp. europaea Olea europaea subsp. sylvestris Phylogeny rDNA Root-lesion Taxonomy 



This research was supported by a grant 219262 ArimNET_ERANET FP7 2012–2015 Project PESTOLIVE ‘Contribution of olive history for the management of soilborne parasites in the Mediterranean basin’ from Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), grant AGR-136 from ‘Consejería de Economía, Innvovación y Ciencia’ from Junta de Andalucía, and Union Europea, Fondo Europeo de Desarrollo regional, “Una manera de hacer Europa”. The first author is a recipient of a “Juan de La Cierva” contract from Ministerio de Economía y Competitividad of Spain. The authors thank J. Martín Barbarroja and G. León Ropero from IAS-CSIC for the excellent technical assistance and Dr. J. A. Navas-Cortés (IAS-CSIC) for his critically reading of the manuscript prior to submission.


  1. Abolafia, J., Liébanas, G., & Peña-Santiago, R. (2002). Nematodes of the order Rhabditida from Andalucía Oriental, Spain. The subgenus Pseudacrobeles Steiner, 1938, with description of a new species. Journal of Nematode Morphology and Systematics, 4, 137–154.Google Scholar
  2. Al-Banna, L., Williamson, V., & Gardner, S. L. (1997). Phylogenetic analysis of nematodes of the genus Pratylenchus using nuclear 26S rDNA. Molecular Phylogenetics and Evolution, 7, 94–102.PubMedCrossRefGoogle Scholar
  3. Al-Banna, L., Ploeg, T., Williamson, V. M., & Kaloshian, I. (2004). Discrimination of six Pratylenchus species using PCR and species-specific primers. Journal of Nematology, 36, 142–146.PubMedCentralPubMedGoogle Scholar
  4. Bajaj, H. K., & Bhatti, D. S. (1984). New and known species of Pratylenchus Filipjev, 1936 (Nematoda: Pratylenchidae) from Haryana, India, with remarks o intraspecific variations. Journal of Nematology, 16, 360–367.PubMedCentralPubMedGoogle Scholar
  5. Berry, S. D., Fargette, M., Spaull, V. W., Morand, S., & Cadet, P. (2008). Detection and quantification of root-knot nematode (Meloidogyne javanica), lesion nematode (Pratylenchus zeae) and dagger nematode (Xiphinema elongatum) parasites of sugarcane using real-time PCR. Molecular and Cellular Probes, 22, 168–176.PubMedCrossRefGoogle Scholar
  6. Carrasco-Ballesteros, A., Castillo, P., Adams, B. J., & Pérez-Artés, E. (2007). Identification of Pratylenchus thornei, the cereal and legume root-lesion nematode, based on SCAR-PCR and satellite DNA. European Journal of Plant Pathology, 118, 115–125.CrossRefGoogle Scholar
  7. Carta, L. K., Skantar, A. M., & Handoo, Z. A. (2001). Molecular, morphological and thermal characters of 19 Pratylenchus spp. and relatives using the D3 segment of the nuclear LSU rRNA gene. Nematropica, 31, 193–207.Google Scholar
  8. Castillo, P., & Vovlas, N. (2007). Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management. Nematology Monographs and Perspectives 6. (Series editors: Hunt, D.J. & Perry, R.N.). Leiden, The Netherlands, Brill, 529 pp.Google Scholar
  9. Castillo, P., Vovlas, N., Subbotin, S., & Troccoli, A. (2003). A new root-knot nematode, Meloidogyne baetica n. sp. (Nematoda: Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology, 93, 1093–1102.PubMedCrossRefGoogle Scholar
  10. Castillo, P., Nico, A. I., Navas-Cortés, J. A., Landa, B. B., Jiménez-Díaz, R. M., & Vovlas, N. (2010). Plant-parasitic nematodes attacking olives trees and their management. Plant Disease, 94, 148–162.CrossRefGoogle Scholar
  11. Coolen, W. A. (1979). Methods for extraction of Meloidogyne spp. (and other nematodes from roots and soil. In: F. Lamberti and C. E. Taylor (Eds.), Root-knot nematodes (Meloidogyne species). Systematics, Biology and Control (pp. 317–329)). New York: Academic.Google Scholar
  12. Corbett, D. C. M., & Clark, S. A. (1983). Surface feature in the taxonomy of Pratylenchus species. Revue de Nématologie, 6, 85–98.Google Scholar
  13. Curran, J., Driver, F., Ballard, J. W. O., & Milner, R. J. (1994). Phylogeny of Metarhizium: analysis of ribosomal DNA sequence data. Mycological Research, 98, 547–555.CrossRefGoogle Scholar
  14. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature methods, 9, 772.PubMedCrossRefGoogle Scholar
  15. De Luca, F., Fanelli, E., Di Vito, M., Reyes, A., & De Giorgi, C. (2004). Comparison of the sequences of the D3 expansion of the 26S ribosomal genes reveals different degrees of heterogeneity in different populations and species of Pratylenchus from the Mediterranean region. European Journal of Plant Pathology, 111, 949–957.CrossRefGoogle Scholar
  16. De Luca, F., Reyes, A., Troccoli, A., & Castillo, P. (2011). Molecular variability and phylogenetic relationships among different species and populations of Pratylenchus (Nematoda: Pratylenchidae) as inferred from the analysis of the ITS rDNA. European Journal of Plant Pathology, 130, 415–426.CrossRefGoogle Scholar
  17. Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., Vanfleteren, J., Vincx, M., & Moens, T. (2005). Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series, 300, 91–103.CrossRefGoogle Scholar
  18. Duncan, L. W., Inserra, R. N., Thomas, W. K., Dunn, D., Mustika, I., Frisse, L. M., Mendes, M. L., Morris, K., & Kaplan, D. T. (1999). Genetic and morphological relationships among isolates of Pratylenchus coffeae and closely related species. Nematropica, 29, 61–80.Google Scholar
  19. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS statistical database (FAOSTAT). (2012). FAOSTAT production statistics of crops. Online database. Scholar
  20. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  21. Hannachi, H., Sommerlatte, H., Breton, C., Msallem, M., El Gazzah, M., El Hadj, S. B., & Bervillé, A. (2009). Oleaster (var. sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genetic Resources and Crop Evolution, 56, 393–403.CrossRefGoogle Scholar
  22. Holterman, M., van der Wurf, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J., & Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 23, 1792–1800.PubMedCrossRefGoogle Scholar
  23. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  24. Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Resources, 30, 3059–3066.CrossRefGoogle Scholar
  25. Lamberti, F., & Baines, R. C. (1969). Effect of Pratylenchus vulnus on the growth of “Ascolano” and “Manzanillo” olive trees in a glasshouse. Plant Disease Reporter, 53, 557–558.Google Scholar
  26. Lamberti, F., Ciccarese, F., Sasanelli, N., Ambrico, A., D’Addabbo, T., & Schiavone, D. (2001). Relationships between plant parasitic nematodes and Verticillium dahliae on olive. Nematologia Mediterranea, 29, 3–9.Google Scholar
  27. Luc, M. (1958). Les nématodes et le flétrissement des cotonniers dans le Sud-Ouest de Madagascar. Coton et Fibres Tropicales, 13, 1–18.Google Scholar
  28. Majd Taheri, Z., Tanha Maafi, Z., Subbotin, S. A., Pourjam, E., & Eskandari, A. (2013). Molecular and phylogenetic studies on Pratylenchidae from Iran with additional data on Pratylenchus delattrei, Pratylenchoides alkani and two unknown species of Hirschmanniella and Pratylenchus. Nematology, 15, 633–651.Google Scholar
  29. Mizukubo, T., Sugimura, K., & Uesugi, K. (2007). A new species of the genus Pratylenchus from chrysanthemum in Kyushu, western Japan (Nematoda: Pratylenchidae). Japanese Journal of Nematology, 37, 63–74.CrossRefGoogle Scholar
  30. Nico, A. I., Jiménez-Díaz, R. M., & Castillo, P. (2003). Host suitability of the olive cultivars Arbequina and Picual for plant-parasitic nematodes. Journal of Nematology, 35, 29–34.PubMedCentralPubMedGoogle Scholar
  31. Page, R. D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.PubMedGoogle Scholar
  32. Palomares-Rius, J. E., Castillo, P., Liébanas, G., Vovlas, N., Landa, B. B., Navas-Cortes, J. A., & Subbotin, S. A. (2010). Description of Pratylenchus hispaniensis n. sp. from Spain and considerations on the phylogenetic relationship among selected genera in the family Pratylenchidae. Nematology, 12, 429–451.CrossRefGoogle Scholar
  33. Pérez, B. A., Barreto, D., Docampo, D., Otero, L., Costilla, M., Roca, M., & Babbitt, S. (2001). Current status of the drying syndrome (seca) of olives trees in Argentina (Abstr.). Phytopathology, 91, S71Google Scholar
  34. Seinhorst, J. W. (1966). Killing nematodes for taxonomic study with hot F.A. 4: 1. Nematologica, 12, 178.CrossRefGoogle Scholar
  35. Siddiqi, M. R. (2000). Tylenchida parasites of plants and insects (2nd ed.). Wallingford: UK, CABI Publishing).CrossRefGoogle Scholar
  36. Subbotin, S. A., Ragsdale, E. J., Mullens, T., Roberts, P. A., Mundo-Ocampo, M., & Baldwin, J. G. (2008). A phylogenetic framework for root-lesion nematodes of the genus Pratylenchus (Nematoda): evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters. Molecular Phylogenetic and Evolution, 48, 491–505.CrossRefGoogle Scholar
  37. Swofford, D. L. (2003). PAUP*. Phylogenetic Analysis using Parsimony (*and other methods), version 4.0b 10, Sunderland, MA, USA, Sinauer Associates.Google Scholar
  38. Uehara, T., Mizukubo, T., Kushida, A., & Momota, Y. (1998). Identification of Pratylenchus coffeae and P. loosi using specific primers for PCR amplification of ribosomal DNA. Nematologica, 44, 357–368.CrossRefGoogle Scholar
  39. Waeyenberge, L., Viaene, N., & Moens, M. (2009). Species-specific duplex PCR for the detection of Pratylenchus penetrans. Nematology, 11, 847–857.CrossRefGoogle Scholar
  40. Zohary, D., & Spiegel-Roy, P. (1975). Beginning of fruit growing in the old world. Science, 187, 319–327.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Juan E. Palomares-Rius
    • 1
  • Ilhem Guesmi
    • 2
  • Najet Horrigue-Raouani
    • 2
  • Carolina Cantalapiedra-Navarrete
    • 1
  • Gracia Liébanas
    • 3
  • Pablo Castillo
    • 1
  1. 1.Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC)Campus de Excelencia Internacional Agroalimentario, ceiA3CórdobaSpain
  2. 2.Department of Biological Sciences and Plant Protection, Higher Institute of AgronomyUniversity of SousseSousseTunisia
  3. 3.Department of Animal Biology, Vegetal Biology and EcologyUniversity of JaénJaénSpain

Personalised recommendations