Advertisement

European Journal of Plant Pathology

, Volume 139, Issue 4, pp 849–861 | Cite as

Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain

  • Elisa González-Domínguez
  • Vittorio Rossi
  • Sami Jorge Michereff
  • José García-Jiménez
  • Josep Armengol
Article

Abstract

Dispersal of conidia of Fusicladium eriobotryae, the causal agent of loquat scab, was investigated in two loquat orchards in Spain from 2010 to 2012. A volumetric spore sampler, horizontally and vertically orientated microscope slides, and rain collectors were placed in loquat fields to trap conidia of F. eriobotryae. No conidia were collected in the volumetric sampler, and highly variable numbers of conidia were collected in the rain gatherers. Large numbers of conidia were collected by microscope slides, particularly by those held in a horizontal orientation compared with those held in a vertical orientation. Approximately 90 % of the F. eriobotryae conidia were collected during rainy periods. Based on ROC and Bayesian analysis, using ≥ 0.2 mm rainfall as a cut-off value resulted in a high probability of correctly predicting actual conidial dispersal, and had a low probability of failing to predict actual conidial dispersal. Based on the index of dispersion and the binary power law, the incidence of loquat scab on fruit was highly aggregated in space between and within trees, and aggregation was influenced by disease incidence. Our results demonstrate, for the first time, that F. eriobotryae is dispersed mainly in rain splash. The results will be integrated into a mechanistic, weather-driven, disease prediction model that should help growers to minimize fungicide application for the management of loquat scab.

Keywords

Eriobotrya japonica Plant disease epidemiology Rain splash Spore traps 

Notes

Acknowledgments

This work was funded by the Cooperativa Agrícola de Callosa d’En Sarrià (Alicante, Spain). Financial support by the Programa de Apoyo a la Investigación y Desarrollo (PAID-00-12) de la Universidad Politécnica de Valencia for E. González-Domínguez during her 3-month stay at the Università Cattolica del Sacro Cuore (Piacenza, Italy) is gratefully acknowledged. We would like to thank E. Soler, A. Perez and J.J. Giner for their technical assistance.

References

  1. Amponsah, N. T., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2009). Rainwater dispersal of botryosphaeria conidia from infected grapevines. New Zealand Plant Protection, 62, 228–233.Google Scholar
  2. Bock, C. H., Cottrell, T. E., Hotchkiss, M. W., Wood, B. W., & Road, D. (2013). Vertical distribution of scab in large pecan trees. Plant Disease, 97, 626–634.CrossRefGoogle Scholar
  3. Bock, C. H., Hotchkiss, M. W., Okie, W. R., & Wood, B. W. (2011). The distribution of peach scab lesions on the surface of diseased peaches. European Journal of Plant Pathology, 130, 393–402.CrossRefGoogle Scholar
  4. Caffi, T., Gilardi, G., Monchiero, M., & Rossi, V. (2013). Production and release of asexual sporangia in Plasmopara viticola. Phytopathology, 103, 64–73.Google Scholar
  5. Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley. 532 pp.Google Scholar
  6. Carisse, O., Meloche, C., Boivin, G., & Jobin, T. (2009). Action thresholds for summer fungicide sprays and sequential classification of apple scab incidence. Plant Disease, 93, 490–498.Google Scholar
  7. Carisse, O., Meloche, C., & Turechek, W. W. (2011). Spatial heterogeneity, incidence-incidence and incidence-lesion density relationship of apple scab (Venturia inaequalis) in managed orchards. European Journal of Plant Pathology, 130, 349–365.Google Scholar
  8. Carisse, O., Rolland, D., Talbot, B., & Savary, S. (2006). Heterogeneity of the aerial concentration and deposition of ascospores of Venturia inaequalis within a tree canopy during the rain. European Journal of Plant Pathology, 117, 13–24.Google Scholar
  9. Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270.CrossRefGoogle Scholar
  10. Frey, C. N., & Keitt, G. W. (1925). Studies of spore dissemination of Venturia inaequalis (Cke.) Wint. in relation to seasonal development of apple scab. Journal of Agricultural Research, 30, 529–540.Google Scholar
  11. Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host-specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47, 511–521.Google Scholar
  12. González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338.Google Scholar
  13. Gottwald, T. R. (1983). Factors affecting spore liberation by Cladosporium carpophilum. Phytopathology, 73, 1500–1505.Google Scholar
  14. Gottwald, T. R. (1985). Influence of temperature, leaf wetness period, leaf age, and spore concentration on infection of pecan leaves by conidia of Cladosporium caryigenum. Phytopathology, 75, 190–194.Google Scholar
  15. Gottwald, T. R., & Bertrand, P. F. (1982). Patterns of diurnal and seasonal airborne spore concentrations of Fusicladium effusum and its impact on a pecan scab epidemic. Phytopathology, 72, 330–335.Google Scholar
  16. GVA, (2012). Butlletí d’Avisos – Diciembre núm. 12/2012. Generalitat Valenciana, Conselleria d’Agricultura, Pesca i AlimentaciòGoogle Scholar
  17. Hanley, J. A. (2005). Receiver operating characteristic (ROC) curves (Encyclopedia of Biostatistics 2nd ed.). New York: Wiley.Google Scholar
  18. Hartman, J. R., Parisi, L., & Bautrais, P. (1999). Effect of leaf wetness duration, temperature, and conidial inoculum dose on apple scab infections. Plant Disease, 83, 531–534.CrossRefGoogle Scholar
  19. Hirst, J. M., & Stedman, J. (1961). The epidemiology of apple scab (Venturia inaequalis (Cke.) Wint.). Annals of Applied Biology, 49, 290–305.CrossRefGoogle Scholar
  20. Jackson, S. L., & Bayliss, K. L. (2011). Spore traps need improvement to fulfil plant biosecurity requirements. Plant Pathology, 60, 801–810.CrossRefGoogle Scholar
  21. Kiely, T. B. (1948). Preliminary studies on Guignardia citricarpa: the ascigerous stage of Phoma citricarpa and its relation to black spot of citrus. Proceedings of the Linnean Society of New South Wales, 73, 249–292.Google Scholar
  22. Kotzé, J. M. (1981). Epidemiology and control of citrus black spot in South Africa. Plant Disease, 65, 945–950.CrossRefGoogle Scholar
  23. Lan, Z., & Scherm, H. (2003). Moisture sources in relation to conidial dissemination and infection by Cladosporium carpophilum within peach canopies. Phytopathology, 93, 1581–1586.Google Scholar
  24. Latham, A. J. (1982). Effect of some weather factors and Fusicladium effusum conidium dispersal on pecan scab occurrence. Phytopathology, 72, 1339–1345.Google Scholar
  25. Lops, F., Frisullo, S., & Rossi, V. (1993). Studies on the spread of the olive scab pathogen, Spilocaea oleagina. EPPO Bulletin, 23, 385–387.Google Scholar
  26. MacHardy, W. E. (1996). Apple Scab: Biology, Epidemiology, and Management. St. Paul: American Phytopathological Society.Google Scholar
  27. Madden, L. V. (1992). Rainfall and the dispersal of fungal spores. Advances in Plant Pathology, 8, 39–79.Google Scholar
  28. Madden, L. V. (2006). Botanical epidemiology: some key advances and its continuing role in disease management. European Journal of Plant Pathology, 115, 3–23.CrossRefGoogle Scholar
  29. Madden, L. V., Hughes, G., & Van den Bosch, F. (2007). The study of plant disease epidemics (p. 421). St. Paul: APS Press.Google Scholar
  30. Meredith, D. S. (1973). Significance of spore release and dispersal mechanisms in plant disease epidemiology. Annual Review of Phytopathology, 11, 313–342.CrossRefGoogle Scholar
  31. Mills, W. D., & Laplante, A. A. (1951). Diseases and insects in the orchard. Cornell Extension Bulletin, 711.Google Scholar
  32. Obanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2008). Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. European Journal of Plant Pathology, 120, 211–222.Google Scholar
  33. Obanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2010). Effects of temperature, inoculum concentration, leaf age, and continuous and interrupted wetness on infection of olive plants by Spilocaea oleagina. Plant Pathology, 60, 190–199.Google Scholar
  34. Ooka, J. J., & Kommnedahl, T. (1977). Wind and rain dispersal of Fusarium moniliforme in corn fields. Phytopathology, 67, 1023–1026.Google Scholar
  35. Owaga, J.M. & English, H. (1991). Diseases of temperate zone. Tree fruit and nut crops. University of California. 461 pp.Google Scholar
  36. Raabe, R., & Gardner, M. W. (1972). Scab of pyracantha, loquat, Toyon and Kageneckia. Phytopathology, 62, 914–916.CrossRefGoogle Scholar
  37. Salerno, M., Somma, V., & Rosciglione, B. (1971). Ricerche sull’epidemiologia della ticchiolatura del nespolo del giappone. Technology Agriculture, 23, 947–956.Google Scholar
  38. Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007). Identification and characterization of Fusicladium eriobotryae: fungal pathogen causing mediterranean loquat scab. Acta Horticulturae, 750, 343–347.Google Scholar
  39. Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157.Google Scholar
  40. Scherm, H., Savelle, A. T., Boozer, R. T., & Foshee, W. G. (2008). Seasonal dynamics of conidial production potential of Fusicladium carpophilum on twig lesions in southeastern peach orchards. Plant Disease, 92, 47–50.Google Scholar
  41. Schubert, K. S., Ritschel, A. R. & Braun, U. B. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1–132.Google Scholar
  42. Spósito, M. B., Amorim, L., Bassanezi, R. B., Filho, A. B., & Hau, B. (2008). Spatial pattern of black spot incidence within citrus trees related to disease severity and pathogen dispersal. Plant Pathology, 57, 103–108.Google Scholar
  43. Sutton, T. B., Jones, A. L., & Nelson, L. A. (1976). Factors affecting dispersal of conidia of the apple scab fungus. Phytopathology, 66, 1313–1317.CrossRefGoogle Scholar
  44. Turechek, W. W., & Wilcox, W. F. (2005). Evaluating predictors of apple scab with receiver operating characteristic curve analysis. Phytopathology, 95, 679–691.PubMedCrossRefGoogle Scholar
  45. Umemoto, S. (1990). Relationship between leaf wetness period, temperature and infection of Venturia nashicola to Japanese pear leaves. Annals of the Phytopathological Society of Japan, 57, 212–218.Google Scholar
  46. Viruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleagina in olive groves of southern Spain : survival, inoculum production, and dispersal. Plant Disease, 97, 1–33.CrossRefGoogle Scholar
  47. Viruega, J. R., Roca, L. F., Moral, J., & Trapero, A. (2011). Factors affecting infection and disease development on olive leaves inoculated with Fusicladium oleagineum. Plant Disease, 95, 1139–1146.Google Scholar
  48. Waggoner, P. E., & Rich, S. (1981). Lesion distribution, multiple infection, and the logistic increase of plant disease. Proceedings of the National Academy of Sciences of USA, 78, 3292–3295.CrossRefGoogle Scholar
  49. Yuen, J. E., & Hughes, G. (2002). Bayesian analysis of plant disease prediction. Plant Pathology, 51, 407–412.CrossRefGoogle Scholar
  50. Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561–577.PubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Elisa González-Domínguez
    • 1
  • Vittorio Rossi
    • 2
  • Sami Jorge Michereff
    • 3
  • José García-Jiménez
    • 1
  • Josep Armengol
    • 1
  1. 1.Instituto Agroforestal MediterráneoUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Istituto di Entomologia e Patologia vegetaleUniversità Cattolica del Sacro CuorePiacenzaItaly
  3. 3.Departamento de AgronomiaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations