Skip to main content
Log in

Differential necrotic lesion formation in soybean cultivars in response to soybean mosaic virus

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In this study, we examined the necrosis phenotype on leaves of two cultivars of soybean (ZheA8901 and Nannong1138-2) that show varying level of resistance to soybean mosaic virus (SMV). The necrotic symptoms seen on inoculated and systemic leaves of soybean cultivar ZheA8901 were reminiscent of programmed cell death (PCD). The cell death phenotypes were evaluated using the TUNEL method, quantification of hydrogen peroxide (H2O2) and salicylic acid, callose production, as well as by monitoring expression of defence genes GmPR-1 and GmNPR1. Our results show that SMV inoculation induced PCD on ZheA8901 is associated with rapid increase in H2O2, increased SA and callose accumulation and higher defence gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison, A. V., & Shalla, T. A. (1974). The ultrastructure of local lesions induced by potato virus X: a sequence of cytological events in the course of infection. Phytopathology, 64, 784–793.

    Article  Google Scholar 

  • Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S., & Uyeda, I. (2009). Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. Molecular Plant - Microbe Interactions, 22, 166–175.

    Article  CAS  PubMed  Google Scholar 

  • Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., & Dong, X. (1994). A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 6(12), 1845–1857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlos, A. A., & James, E. S. (2013). A survey of resistance to tomato bushy stunt virus in the genus nicotiana reveals that the hypersensitive response is triggered by one of three different viral proteins. Molecular Plant-Microbe Interactions, 26(2), 240–248.

    Article  Google Scholar 

  • Chandra-Shekara, A. C., Navarre, D., Kachroo, A., Kang, H. G., Klessig, D., & Kachroo, P. (2004). Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant Journal, 40(5), 647–659.

    Article  CAS  PubMed  Google Scholar 

  • Conrath, U., Klessig, D., & Bachmair, A. (1998). Tobacco plants perturbed in the ubiquitin-dependent protein degradation system accumulate callose, salicylic acid, and pathogenesis-related protein 1. Plant Cell Reports, 17(11), 876–880.

    Article  CAS  Google Scholar 

  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., et al. (1994). A central role of salicylic acid in plant disease resistance. Science, 266(5188), 1247–1250.

    Article  CAS  PubMed  Google Scholar 

  • Delledonne, M., Xia, Y., Dixon, R. A., & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394(6693), 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261(5122), 754–756.

    Article  CAS  PubMed  Google Scholar 

  • Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119(3), 493–501.

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson, R. L., & Lucas, W. J. (1996). How do viruses traffic on the ‘vascular highway’? Trends in Plant Science, 1(8), 250–251.

    Article  Google Scholar 

  • Greenberg, J. T., & Yao, N. (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology, 6(3), 201–211.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, J., Youssef-Banora, M., de Almeida-Engler, J., & Grundler, F. M. (2010). The role of callose deposition along plasmodesmata in nematode feeding sites. Molecular Plant-Microbe Interactions, 23(5), 549–557.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias, V. A., & Meins, F. (2000). Movement of plant viruses is delayed in a β-1, 3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant Journal, 21(2), 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Kachroo, P., Chandra-Shekara, A. C., & Klessig, D. F. (2006). Plant signal transduction and defense against viral pathogens. Advances in Virus Research, 66, 161–191.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6291–6296.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kranthi, K. M., & Karen-Beth, G. S. (2013). Plant immune responses against viruses: how does a virus cause disease? Plant Cell, online.

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79(4), 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Yang, Q., Zhi, H., & Gai, J. (2010). Identification and distribution of soybean mosaic virus strains in southern China. Plant Disease, 94(3), 351–357.

    Article  Google Scholar 

  • Li, W., Zhao, Y., Liu, C., Yao, G., Wu, S., Hou, C., et al. (2012). Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Reports, 31(5), 905–916.

    Article  CAS  PubMed  Google Scholar 

  • Lorang, J. M., Sweat, T. A., & Wolpert, T. J. (2007). Plant disease susceptibility conferred by a “resistance” gene. Proceedings of the National Academy of Sciences of the United States of America, 104, 14861–14866.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., & Ton, J. (2011). Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions, 24(2), 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Miklós, P., Julia, K., Ingrid, H., Erich, F. E., & Balázs, B. (2004). Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiological and Molecular Plant Pathology, 65(2004), 39–47.

    Google Scholar 

  • Niderman, T., Genetet, I., Bruyère, T., Gees, R., Stintzi, A., Legrand, M., et al. (1995). Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108(1), 17–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Padder, B. A. (2014). Plant disease resistance genes: from perception to signal transduction. Plant Signaling: Understanding the Molecular Crosstalk, 20, 345–354.

    Google Scholar 

  • Patterson, B. D., MacRae, E. A., & Ferguson, I. B. (1984). Estimation of hydrogen peroxide in plant extracts using titanium(IV). Analytical Biochemistry, 139(2), 487–492.

    Article  CAS  PubMed  Google Scholar 

  • Pontier, D., Godiard, L., Marco, Y., & Roby, D. (1994). Hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant Journal, 5(4), 507–521.

    Article  CAS  PubMed  Google Scholar 

  • Rauscher, M., Adám, A. L., Wirtz, S., Guggenheim, R., Mendgen, K., & Deising, H. B. (1999). PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant Journal, 19(6), 625–633.

    Article  CAS  PubMed  Google Scholar 

  • Scala, A., Mirabella, R., Mugo, C., Matsui, K., Haring, M. A., & Schuurink, R. C. (2013). E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Frontiers in Plant Science, 4, 1–11.

    Article  Google Scholar 

  • Seo, Y. S., Rojas, M. R., Lee, J. Y., Lee, S. W., Jeon, J. S., Ronald, P., et al. (2006). A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 103, 11856–11861.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Séron, K., & Haenni, A.-l. (1996). Vascular movement of plant viruses. Molecular Plant - Microbe Interactions, 9(6), 435–442.

    Article  PubMed  Google Scholar 

  • Soosaar, J. L., Burch-Smith, T. M., & Dinesh-Kumar, S. P. (2005). Mechanisms of plant resistance to viruses. Nature Reviews Microbiology, 3(10), 789–798.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31171574, 31101164), the National Soybean Industrial Technology System of China (No. CARS-004) and the Fund of Transgenic Breeding for Soybean Resistance to Soybean Mosaic Virus (No.2008ZX08004-004), the 111project (B08025) and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Jian Zhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Song, Y.P., Wang, Y. et al. Differential necrotic lesion formation in soybean cultivars in response to soybean mosaic virus. Eur J Plant Pathol 139, 525–534 (2014). https://doi.org/10.1007/s10658-014-0408-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0408-7

Keywords

Navigation