Advertisement

European Journal of Plant Pathology

, Volume 139, Issue 3, pp 525–534 | Cite as

Differential necrotic lesion formation in soybean cultivars in response to soybean mosaic virus

  • Kai Zhang
  • Ying Pei Song
  • Yu Wang
  • Kai Li
  • Le Gao
  • Yong Kun Zhong
  • A. Karthikeyan
  • Hai Jian Zhi
Article

Abstract

In this study, we examined the necrosis phenotype on leaves of two cultivars of soybean (ZheA8901 and Nannong1138-2) that show varying level of resistance to soybean mosaic virus (SMV). The necrotic symptoms seen on inoculated and systemic leaves of soybean cultivar ZheA8901 were reminiscent of programmed cell death (PCD). The cell death phenotypes were evaluated using the TUNEL method, quantification of hydrogen peroxide (H2O2) and salicylic acid, callose production, as well as by monitoring expression of defence genes GmPR-1 and GmNPR1. Our results show that SMV inoculation induced PCD on ZheA8901 is associated with rapid increase in H2O2, increased SA and callose accumulation and higher defence gene expression.

Keywords

Necrosis Programmed cell death Salicylic acid SMV 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31171574, 31101164), the National Soybean Industrial Technology System of China (No. CARS-004) and the Fund of Transgenic Breeding for Soybean Resistance to Soybean Mosaic Virus (No.2008ZX08004-004), the 111project (B08025) and PAPD.

References

  1. Allison, A. V., & Shalla, T. A. (1974). The ultrastructure of local lesions induced by potato virus X: a sequence of cytological events in the course of infection. Phytopathology, 64, 784–793.CrossRefGoogle Scholar
  2. Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S., & Uyeda, I. (2009). Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. Molecular Plant - Microbe Interactions, 22, 166–175.PubMedCrossRefGoogle Scholar
  3. Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., & Dong, X. (1994). A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 6(12), 1845–1857.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Carlos, A. A., & James, E. S. (2013). A survey of resistance to tomato bushy stunt virus in the genus nicotiana reveals that the hypersensitive response is triggered by one of three different viral proteins. Molecular Plant-Microbe Interactions, 26(2), 240–248.CrossRefGoogle Scholar
  5. Chandra-Shekara, A. C., Navarre, D., Kachroo, A., Kang, H. G., Klessig, D., & Kachroo, P. (2004). Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant Journal, 40(5), 647–659.PubMedCrossRefGoogle Scholar
  6. Conrath, U., Klessig, D., & Bachmair, A. (1998). Tobacco plants perturbed in the ubiquitin-dependent protein degradation system accumulate callose, salicylic acid, and pathogenesis-related protein 1. Plant Cell Reports, 17(11), 876–880.CrossRefGoogle Scholar
  7. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., et al. (1994). A central role of salicylic acid in plant disease resistance. Science, 266(5188), 1247–1250.PubMedCrossRefGoogle Scholar
  8. Delledonne, M., Xia, Y., Dixon, R. A., & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394(6693), 585–588.PubMedCrossRefGoogle Scholar
  9. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261(5122), 754–756.PubMedCrossRefGoogle Scholar
  10. Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119(3), 493–501.PubMedCrossRefGoogle Scholar
  11. Gilbertson, R. L., & Lucas, W. J. (1996). How do viruses traffic on the ‘vascular highway’? Trends in Plant Science, 1(8), 250–251.CrossRefGoogle Scholar
  12. Greenberg, J. T., & Yao, N. (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology, 6(3), 201–211.PubMedCrossRefGoogle Scholar
  13. Hofmann, J., Youssef-Banora, M., de Almeida-Engler, J., & Grundler, F. M. (2010). The role of callose deposition along plasmodesmata in nematode feeding sites. Molecular Plant-Microbe Interactions, 23(5), 549–557.PubMedCrossRefGoogle Scholar
  14. Iglesias, V. A., & Meins, F. (2000). Movement of plant viruses is delayed in a β-1, 3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant Journal, 21(2), 157–166.PubMedCrossRefGoogle Scholar
  15. Kachroo, P., Chandra-Shekara, A. C., & Klessig, D. F. (2006). Plant signal transduction and defense against viral pathogens. Advances in Virus Research, 66, 161–191.PubMedCrossRefGoogle Scholar
  16. Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6291–6296.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kranthi, K. M., & Karen-Beth, G. S. (2013). Plant immune responses against viruses: how does a virus cause disease? Plant Cell, online.Google Scholar
  18. Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79(4), 583–593.PubMedCrossRefGoogle Scholar
  19. Li, K., Yang, Q., Zhi, H., & Gai, J. (2010). Identification and distribution of soybean mosaic virus strains in southern China. Plant Disease, 94(3), 351–357.CrossRefGoogle Scholar
  20. Li, W., Zhao, Y., Liu, C., Yao, G., Wu, S., Hou, C., et al. (2012). Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Reports, 31(5), 905–916.PubMedCrossRefGoogle Scholar
  21. Lorang, J. M., Sweat, T. A., & Wolpert, T. J. (2007). Plant disease susceptibility conferred by a “resistance” gene. Proceedings of the National Academy of Sciences of the United States of America, 104, 14861–14866.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., & Ton, J. (2011). Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions, 24(2), 183–193.PubMedCrossRefGoogle Scholar
  23. Miklós, P., Julia, K., Ingrid, H., Erich, F. E., & Balázs, B. (2004). Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiological and Molecular Plant Pathology, 65(2004), 39–47.Google Scholar
  24. Niderman, T., Genetet, I., Bruyère, T., Gees, R., Stintzi, A., Legrand, M., et al. (1995). Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108(1), 17–27.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Padder, B. A. (2014). Plant disease resistance genes: from perception to signal transduction. Plant Signaling: Understanding the Molecular Crosstalk, 20, 345–354.Google Scholar
  26. Patterson, B. D., MacRae, E. A., & Ferguson, I. B. (1984). Estimation of hydrogen peroxide in plant extracts using titanium(IV). Analytical Biochemistry, 139(2), 487–492.PubMedCrossRefGoogle Scholar
  27. Pontier, D., Godiard, L., Marco, Y., & Roby, D. (1994). Hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant Journal, 5(4), 507–521.PubMedCrossRefGoogle Scholar
  28. Rauscher, M., Adám, A. L., Wirtz, S., Guggenheim, R., Mendgen, K., & Deising, H. B. (1999). PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant Journal, 19(6), 625–633.PubMedCrossRefGoogle Scholar
  29. Scala, A., Mirabella, R., Mugo, C., Matsui, K., Haring, M. A., & Schuurink, R. C. (2013). E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Frontiers in Plant Science, 4, 1–11.CrossRefGoogle Scholar
  30. Seo, Y. S., Rojas, M. R., Lee, J. Y., Lee, S. W., Jeon, J. S., Ronald, P., et al. (2006). A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 103, 11856–11861.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Séron, K., & Haenni, A.-l. (1996). Vascular movement of plant viruses. Molecular Plant - Microbe Interactions, 9(6), 435–442.PubMedCrossRefGoogle Scholar
  32. Soosaar, J. L., Burch-Smith, T. M., & Dinesh-Kumar, S. P. (2005). Mechanisms of plant resistance to viruses. Nature Reviews Microbiology, 3(10), 789–798.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Kai Zhang
    • 1
  • Ying Pei Song
    • 1
  • Yu Wang
    • 1
  • Kai Li
    • 1
  • Le Gao
    • 1
  • Yong Kun Zhong
    • 1
  • A. Karthikeyan
    • 1
  • Hai Jian Zhi
    • 1
  1. 1.National Center for Soybean Improvement; National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina

Personalised recommendations