Advertisement

European Journal of Plant Pathology

, Volume 139, Issue 2, pp 271–287 | Cite as

Fine-tuning banana Xanthomonas wilt control options over the past decade in East and Central Africa

  • Guy Blomme
  • Kim Jacobsen
  • Walter Ocimati
  • Fen Beed
  • Jules Ntamwira
  • Charles Sivirihauma
  • Fred Ssekiwoko
  • Valentine Nakato
  • Jerome Kubiriba
  • Leena Tripathi
  • William Tinzaara
  • Flory Mbolela
  • Lambert Lutete
  • Eldad Karamura
Article

Abstract

Xanthomonas wilt, caused by Xanthomonas campestris pv. musacearum has, since 2001, become the most important and widespread disease of Musa in East and Central Africa. Over the past decade, new research findings and especially feedback from small-scale farmers have helped in fine-tuning Xanthomonas wilt control options. During the initial years of the Xanthomonas wilt epidemic in East Africa, the complete uprooting of diseased mats and the burning or burying of plant debris was advocated as part of a control package which included the use of clean garden tools and early removal of male buds to prevent insect vector transmission. Uprooting a complete mat (i.e. the mother plant and a varying number of lateral shoots) is understandably time-consuming and labour intensive and becomes very cumbersome when a large number of diseased mats have to be removed. Recent research findings suggest that Xcm bacteria do not colonize all lateral shoots (i.e. incomplete systemicity occurs) and even when present that this does not necessarily lead to symptom expression and disease. This led to a new control method whereby only the visibly diseased plants within a mat are cut at soil level. The underlying idea is that the continued removal of only the diseased plants in a field will reduce the inoculum level and will bring down disease incidence to an acceptable level. This method is less labour intensive and takes a short time compared to the removal of a complete mat. However, single diseased stem removal needs to go hand in hand with prevention of new infections that can occur through the use of contaminated garden tools or through insect vector transmission. Novel transgenic approaches are also discussed. This paper presents an overview of past and ongoing research towards the development of a more practical and less demanding control strategy for Xanthomonas wilt.

Keywords

Clean tools Collective action Early de-budding Escape variety Resistance Single diseased stem removal 

References

  1. Addis, T., Handoro, F., & Blomme, G. (2004). Bacterial wilt (Xanthomonas campestris pv. musacearum) on Enset and banana in Ethiopia. InfoMusa, 13(2), 44–45.Google Scholar
  2. Addis, T., Turyagyenda, L. F., Alemu, T., Karamura, E., & Blomme, G. (2010). Garden tool transmission of Xanthomonas campestris pv. musacearum on banana (Musa spp.) and enset in Ethiopia. Acta Horticulturae, 879, 367–372.Google Scholar
  3. Adikini, S., Tripathi, L., Beed, F., Tusiime, G., Magembe, E. M., & Kim, D. J. (2011). Development of a specific molecular tool for detecting Xanthomonas campestris pv. musacearum. Plant Pathology, 60, 443–452.CrossRefGoogle Scholar
  4. Adriko, J., Aritua, V., Mortensen, C. N., Tushemereirwe, W. K., Kubiriba, J., & Lund, O. S. (2011). Multiplex PCR for specific and robust detection of Xanthomonas campestris pv. musacearum in pure culture and infected plant material. Plant Pathology, 61, 1–8.Google Scholar
  5. Aitchedji, C., Tenkouano, A., & Coulibaly, O. (2010). Factors affecting adoption of disease-resistant plantain and banana hybrids in Nigeria. Acta Horticulturae, 879, 741–748.Google Scholar
  6. Anonymous (2012). Guide de terrain sur le contrôle et la gestion du BXW (Wilt bactérien du bananier) en Province du Nord et Sud Kivu, RDC. Commission Provinciale de lutte contre les maladies du bananier au Nord Kivu. pp. 27.Google Scholar
  7. Aritua, V., Parkinson, N., Thwaites, R., Heeney, J. V., Jones, D. J., Tushemereirwe, W., Crozier, J., Reeder, R., Stead, D. E., & Smith, J. (2008). Characterisation of the Xanthomonas sp. causing wilt of enset and banana reveals it is a strain of X. vasicola. Plant Pathology, 57(1), 170–177.Google Scholar
  8. Atim, M., Beed, F., Tusiime, G., Tripathi, L., & van Asten, P. (2013). High potassium, calcium and nitrogen application reduce susceptibility to banana Xanthomonas wilt caused by Xanthomonas campestris pv. musacearum. Plant Disease, 97, 123–130.CrossRefGoogle Scholar
  9. Bagamba, F., Kikulwe, E., Tushemereirwe, W. K., Ngambeki, D., Muhangi, J., Kagezi, G. H., Ramaga, P. E., & Eden-Green, S. (2006). Awareness of banana bacterial wilt in Uganda: farmers’ perspective. African Crop Science Journal, 14(2), 157–164.Google Scholar
  10. Beed, F., Kubiriba, J., Mugalula, A., Kolowa, H., Bulili, S., Nduwayezu, A., Murekezi, C., Sakayoya, E., Ndayihanzamaso, P., Mulenga, R., Abass, M., Mathe, L., Masheka, B., Onyango, M., Shitabule, E., Nakato, V., Ramathani, I., & Bouwmeester, H. (2013). Processes and partnerships for effective regional surveillance of banana diseases. In G. Blomme, P. van Asten, & B. Vanlauwe (Eds.), Banana systems in the humid highlands of sub-Saharan Africa: Enhancing resilience and productivity (pp. 210–215). Wallingford: CABI.Google Scholar
  11. Biruma, M., Pillay, M., Tripathi, L., Blomme, G., Abele, S., Mwangi, M., Bandyopadhyay, R., Muchunguzi, P., Kassim, S., Nyine, S., Turyagenda, L., & Eden-Green, S. (2007). Banana Xanthomonas wilt: a review of the disease, management strategies and future research directions. African Journal of Biotechnology, 6, 953–962.Google Scholar
  12. Blomme, G. (2000). The interdependence of root and shoot development in banana (Musa spp.) under field conditions and the influence of different biophysical factors on this relationship. Ph.D. thesis N° 421. K.U.Leuven. Faculty of Agriculture and Applied Biological Sciences. Belgium. pp. 183.Google Scholar
  13. Blomme, G., Mukasa, H., Mpiira, S., & Ssemakadde, R. (2005a). Controlling banana Xanthomonas wilt through debudding. InfoMusa, 14, 46.Google Scholar
  14. Blomme, G., Mukasa, H., Ssekiwoko, F., & Eden-Green, S. (2005b). On-farm assessment of banana bacterial wilt control options. African Crop Science Conference Proceedings, 7, 317–320.Google Scholar
  15. Blomme, G., Turyagenda, L. F., Mukasa, H., & Eden-Green, S. (2008). The effectiveness of different herbicides in the destruction of banana Xanthomonas wilt infected plants. Special Issue. Research Advances in Banana and Enset in Eastern Africa. African Crop Science Journal, 16, 103–110.Google Scholar
  16. Blomme, G., Eden-Green, S., Mustaffa, M., Nwauzoma, B., & Thangvelu, R. (2011). Major diseases of banana. In M. Pillay & A. Tenkouano (Eds.), Banana breeding: Progress and challenges (pp. 85–119). UK: CRC Press.CrossRefGoogle Scholar
  17. Buregyeya, H. G., Tusiime, J., Kubiriba, J., & Tushmereirwe, W. K. (2008). Evaluation of distant transmission of banana bacterial wilt in Uganda. Paper presented at the conference on Banana and Plantain in Africa: Harnessing International Partnerships to Increase Research Impact, October 5–9, 2008, Mombasa, Kenya.Google Scholar
  18. Carter, B. A., Reeder, R., Mgenzi, S. R., Kinyua, Z. M., Mbaka, J. N., Doyle, K., Nakato, V., Mwangi, M., Beed, F., Aritua, V., Lewis Ivey, M. L., Miller, S. A., & Smith, J. J. (2010). Identification of Xanthomonas vasicola (formerly X. campestris pv. musacearum), causative organism of banana Xanthomonas wilt, in Tanzania, Kenya and Burundi. Plant Pathology, 59, 403.CrossRefGoogle Scholar
  19. Chabrier, C., & Quénéhervé, P. (2003). Control of the burrowing nematode (Radopholus similis Cobb) on banana: impact of the banana field destruction method on the efficiency of the following fallow. Crop Protection, 22, 121–127.CrossRefGoogle Scholar
  20. Chen, C. H., Lin, H. J., Ger, M. J., Chow, D., & Feng, T. Y. (2000). The cloning and characterization of a hypersensitive response assisting protein that may be associated with the harpin-mediated hypersensitive response. Plant Molecular Biology, 43, 429–438.PubMedCrossRefGoogle Scholar
  21. Danielsen, S., Boa, E., Mafabi, M., Mutebi, E., Reeder, R., Kabeere, F., & Karyeija, R. (2012). Using plant clinic registers to assess the quality of diagnoses and advice given to farmers: a case study from Uganda. The Journal of Agricultural Education and Extension. doi: 10.1080/1389224X.2012.741528.Google Scholar
  22. Dzomeku, B. M., Staver, C., Aflakpui, G. K. S., Sanogo, D., Garming, H., Ankomah, A. A., & Darkey, S. K. (2010). Evaluation of the dissemination of new banana (Musa spp) technologies in Central Ghana-the role of technology characteristics. Acta Horticulturae, 879, 735–740.Google Scholar
  23. Eden-Green, S. J. (2004). How can the advance of banana Xanthomonas wilt be halted? InfoMusa, 13, 38–41.Google Scholar
  24. FAO (2013). Core production data. FAOSTAT, Food and Agriculture Organization of the United Nations, Rome, Italy. http://faostat.fao.org/site/340/default.aspx. March 2013.
  25. Feder, G., Murgai, R., & Quizon, J. B. (2004). Sending farmers back to school: the impact of farmer field schools in Indonesia. Review of Agricultural Economics, 26(1), 45–62.CrossRefGoogle Scholar
  26. Frison, E., & Sharrock, S. (1999). The economic, social and nutritional importance of banana in the world. In C. Picq, E. Fouré, & E. A. Frison (Eds.). Bananas and food security. Proceedings of an international symposium held in Douala, Cameroon, 10–14 November 1998. INIBAP, Montpellier, France, pp. 21–35.Google Scholar
  27. Gold, C. S., Ogenga-Latigo, M. W., Tushemereirwe, W. K., Kashaija, I., & Nankinga, C. (1991). Farmers’ perceptions of banana pest constraints in Uganda: Results from a Rapid Rural Appraisal. Proceedings of a research coordination meeting for biological and integrated control of highland banana pest and diseases in Africa. 14 November Cotonou, Benin.Google Scholar
  28. Gold, C. S., Karamura, E. B., Kiggundi, A., Abera, A. M. K., Bagamba, F., Wejuli, M., et al. (2000). Geographic shifts in highland banana production in Uganda. In: K. Craenen, R. Ortiz, E. B. Karamura, & D. R. Vuylsteke (Eds.). Proceedings of the First International Conference on Banana and Plantain for Africa. Acta Horticulturae, 540, 55–62.Google Scholar
  29. Hawkins, R., Heemskerk, W., Booth, R., Daane, J., Maatman, A., & Adekunle, A. A. (2009). Integrated Agricultural Research for Development (IAR4D). A Concept Paper for the Forum for Agricultural Research in Africa (FARA) Sub-Saharan Africa Challenge Programme (SSA CP). FARA, Accra, Ghana. 92 p.Google Scholar
  30. Jogo, W., Karamura, E., Tinzaara, W., Kubiriba, J., & Rietveld, A. (2013). Determinants of farm-level adoption of cultural practices for Banana Xanthomonas wilt control in Uganda. Journal of Agricultural Science, 5(7), 70–82.CrossRefGoogle Scholar
  31. Kabunga, N. S., Dubois, T., & Qaim, M. (2011). Information asymmetries and technology adoption: The case of tissue culture bananas in Kenya. Discussion paper N° 74, Georg-August-Universität Göttingen.Google Scholar
  32. Kagezi, G. H., Kangire, A., Tushmereirwe, W., Bagamba, F., Kikulwe, E., Muhangi, J., Gold, C. S., & Ragama, P. (2006). Banana bacterial wilt incidence in Uganda. African Crop Science Journal, 14, 83–91.Google Scholar
  33. Kalyebara, R., Wood, S., & Abodi, P. M. (2007). Assessing the potential impact of selected technologies on the banana industry in Uganda. In: M. Smale, & W. K. Tushemereirwe (Eds.), An Economic Assessment of Banana Genetic Improvement and Innovation in the Lake Victoria Region of Uganda and Tanzania. IFPRI Research Report 155. IFPRI, Washington, DC, pp. 141–156.Google Scholar
  34. Karamura, E. B., & Tinzaara, W. (2009). Management of Banana Xanthomonas Wilt in East and Central Africa: Proceedings of the Workshop on Review of the Strategy for the Management of Banana Xanthomonas Wilt, 23–27 July 2007, Hotel la Palisse, Kigali, Rwanda. Bioversity International, Uganda, 102 pp.Google Scholar
  35. Karamura, E. B., Osiru, M., Blomme, G., Lusty, C., & Picq, C. (2006). Developing a regional Strategy to address the outbreak of Banana Xanthomonas wilt in East and Central Africa: Proceedings of the Banana Xanthomonas wilt regional preparedness and strategy development workshop held in Kampala, Uganda - 14–18 February 2005. International Network for the Improvement of Banana and Plantain, Montpellier, France.Google Scholar
  36. Katungi, E. (2007). Social capital and technology adoption on small farms: The case of banana production technology in Uganda. PhD thesis, Department of Agricultural Economics, Extension and Rural Development, University of Pretoria, South Africa.Google Scholar
  37. Katungi, E., & Akankwasa, K. (2010). Community-based organizations and their effect on adoption of agricultural technologies in Uganda: a study of banana pest management technology. Acta Horticulturae, 879, 719–726.Google Scholar
  38. Kivlin, J. E., & Fliegel, F. C. (1967). Differential perceptions of innovations and rate of adoption. Rural Sociology, 32, 78–91.Google Scholar
  39. Kubiriba, J., Karamura, E. B., Jogo, W., Tushemereirwe, W. K., & Tinzaara, W. (2012). Community mobilization: a key to effective control of banana Xanthomonas wilt. Journal of Development and Agricultural Economics, 4, 125–131.CrossRefGoogle Scholar
  40. Lin, H. J., Cheng, H. Y., Chen, C. H., Huang, H. C., & Feng, T. Y. (1997). Plant amphipathic proteins delay the hypersensitive response caused by harpin (Pss) and Pseudomonas syringae pv. syringae. Physiology and Molecular Plant Pathology, 51, 367–376.CrossRefGoogle Scholar
  41. Mazvimavi, K., & Twomlow, S. (2009). Socio-economic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe. Agricultural Systems, 101, 20–29. doi: 10.1016/j.agsy.2009.02.002.CrossRefGoogle Scholar
  42. Mgenzi, S. R. B., Muchunguzi, D., Mutagwaba, T., Mkondo, F., & Mohamed, R. (2006). An outbreak of banana bacterial wilt in Muleba district, Kagera region, Tanzania. Disease report, Maruku Agriculture Research and Development Institute Tanzania.Google Scholar
  43. Miller, S. E., Beed, F. D., & Harmon, C. L. (2009). Plant disease diagnostic capabilities and networks. Annual Review of Phytopathology, 47, 15–38.PubMedCrossRefGoogle Scholar
  44. Muhangi, J., Nankinga, C., Tushemereirwe, W. K., Rutherford, M., Ragama, P., Nowakunda, K., & Abeyasekera, S. (2006). Impact of awareness campaigns for banana bacterial wilt control in Uganda. African Crop Science Journal, 14(2), 175–183.Google Scholar
  45. Mwangi, M. (2007). Removing infected banana mats to contain Xanthomonas wilt: Experiences in Uganda, Rwanda and the Democratic Republic of Congo. A brief prepared for the Crop Crisis Control Project. IITA-C3P, Kampala, Uganda, 13p.Google Scholar
  46. Mwangi, M., & Nakato, V. (2007). Key factors responsible for the banana Xanthomonas wilt pandemic on banana in East and Central Africa. In: ISHS/ProMusa symposium, Recent advances in banana crop protection for sustainable production and improved livelihoods. Acta Horticulturae, 828, 395–404.Google Scholar
  47. Mwangi, M., Bandyopadhyay, R., Tushemereirwe, W., & Ragama, P. (2006). Developing technologies to support replanting of banana to rehabilitate farms affected by Xanthomonas wilt. In: G. Saddler, J. Elphinstone, J.Smith (Eds.), Programme and Abstract Book of the 4th International Bacterial Wilt Symposium, 17th-20th July 2006, The Lakeland Conference Centre, Central Science laboratory, York, UK, p. 63.Google Scholar
  48. Mwebaze, J. M., Tusime, G., Tushmereirwe, W. K., & Kubiriba, J. (2006). The survival of Xanthomonas campestris pv musacearum in soil and plant debris. African Crop Science Journal, 14, 121–127.Google Scholar
  49. Nakato, V., Beed, F., Van Asten, P., Rwomushana, I., & Opio, F. (2013a). Effect of potassium availability to plants on expression of banana Xanthomonas wilt. African Crop Science Journal in pressGoogle Scholar
  50. Nakato, V., Ndugo, V., Beed, F., Ramathani, I., Rwomushana, I., & Opio, F. (2013b). Natural and synthetic disinfectants for farm tools contaminated with Xanthomonas campestris pv. musacearum. (ASARECA working series) in press.Google Scholar
  51. Nakato, V., Akinbade, S. A., Kumar, P. L., Bandyopadhyay, R., & Beed, F. (2013c). Development of ELISA for the detection of Xanthomonas campestris pv. musacearum, the causal agent of BXW: Banana Xanthomonas Wilt. In G. Blomme, P. van Asten, & B. Vanlauwe (Eds.), Banana systems in the humid highlands of sub-Saharan Africa: Enhancing resilience and productivity (pp. 93–100). Wallingford: CABI.Google Scholar
  52. Namukwaya, B., Tripathi, L., Tripathi, J. N., Arinaitwe, G., Mukasa, S. B., & Tushemereirwe, W. K. (2012). Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas Wilt Disease. Transgenic Research, 12, 855–865.CrossRefGoogle Scholar
  53. Nankinga, C., & Okasaai, O. (2006). Community approaches used in managing BXW in Uganda. In E. B. Karamura, M. Osiru, G. Blomme, C. Lusty, C. Picq (Eds.), 2006 Developing a regional Strategy to address the outbreak of Banana Xanthomonas wilt in East and Central Africa: Proceedings of the Banana Xanthomonas wilt regional preparedness and strategy development workshop held in Kampala, Uganda - 14–18 February 2005. International Network for the Improvement of Banana and Plantain, Montpellier, France.Google Scholar
  54. Ndungo, V., Bakelana, K., Eden-Green, S., & Blomme, G. (2004). An outbreak of banana Xanthomonas wilt (Xanthomonas campestris pv. musacearum) in the Democratic Republic of Congo. InfoMusa, 13, 43–44.Google Scholar
  55. Ndungo, V., Eden-Green, S., Blomme, G., Crozier, J., & Smith, J. (2005). Presence of banana xanthomonas wilt (Xanthomonas campestris pv. musacearum) in the Democratic Republic of Congo (DRC). New Disease Reports, 11, 18.Google Scholar
  56. Nelson, R., Orrego, R., Ortiz, O., Tenorio, J., Mundt, C., Fredrix, M., & Vien, N. V. (2001). Working with resource-poor farmers to manage plant diseases. Plant Disease, 85, 684–695.CrossRefGoogle Scholar
  57. Nordling, L. (2010). Uganda prepares to plant transgenic bananas. Nature News. doi: 10.1038/news.2010.509.Google Scholar
  58. Ocimati, W., Ssekiwoko, F., Karamura, E., Tinzaara, W., Eden-Green, S., & Blomme, G. (2012). Systemicity of Xanthomonas campestris pv. musacearum and time to disease expression after inflorescence infection in East African highland and Pisang Awak bananas in Uganda. Plant Pathology. doi: 10.1111/j.1365-3059.2012.02697.x.Google Scholar
  59. Ocimati, W., Ssekiwoko, F., Karamura, E. B., Tinzaara, W., & Blomme, G. (2013). Does Xanthomonas campestris pv. musacearum Colonize Banana Cord Root Tissue? In: Van den Bergh et al. (Eds.), Proc. Int. ISHS-ProMusa Symp. on Bananas and Plantains: Towards Sustainable Global Production and Improved Uses. Acta Hort. 986, ISHS, pp 103–109.Google Scholar
  60. Okurut, A. W., Tushmereirwe, W. K., Aritua, V., & Ragama, P. E. (2006). Use of herbicides for control of banana bacterial wilt in Uganda. African Crop Science Journal, 14, 143–149.Google Scholar
  61. Price, N. S. (1995). Banana morphology—part I: Roots and rhizomes. In S. Gowen (Ed.), Bananas and plantains, World Crop Series (pp. 179–189). Suffolk: Chapman and Hall.CrossRefGoogle Scholar
  62. Ramathani, I., & Beed, F. (2013). Use of DNA capture kits to collect Xanthomonas campestris pv. musacearum and banana bunchy top virus pathogen DNA for molecular diagnostics. In G. Blomme, P. van Asten, & B. Vanlauwe (Eds.), Banana systems in the humid highlands of sub-Saharan Africa: Enhancing resilience and productivity (pp. 109–115). Wallingford: CABI.Google Scholar
  63. Rogers, E. M. (1983). Diffusion of innovations. New York: The Free Press.Google Scholar
  64. Shehabu, M., Addis, T., Mekonen, S., De Waele, D., & Blomme, G. (2010). Nematode infection predisposes banana to soil-borne Xanthomonas campestris pv. musacearum transmission. Tree and Forestry Science and Biotechnology, 4, 63–64.Google Scholar
  65. Sherwood, S. G. (1997). Little things mean a lot: working with Central American farmers to address the mystery of plant disease. Agriculture and Human Values, 14, 181–189.CrossRefGoogle Scholar
  66. Simmonds, N. W. (1966). Bananas (2nd ed.). Longmans: Tropical Agricultural Series.Google Scholar
  67. Sinja, J., Karugia, J., Baltenweck, I., Waithaka, M., Miano, M. D., Nyikal, R., & Romney, D. (2004). Farmer perception of technology and its impacts on technology uptake: The case of fodder legume in Central Kenya Highlands. In: Shaping the future of African Agriculture for Development - The role of social scientist. Proceedings of the Inaugural Symposium of the African Association of Agricultural Economists, Grand Regency Hotel, Nairobi, Kenya, December 6–8, 2004.Google Scholar
  68. Sivirihauma, C., Rutikanga, A., Murekezi, C., Blomme, G., Anuarite, U., Ocimati, W., Lepoint, P., & Ndungo, V. (2013). How does the length of a fallow period, after total uprooting of a Xanthomonas wilt-infected banana field, influence infection of newly established clean planting materials? Case studies from Rwanda and North Kivu, Democratic Republic of Congo. Chapter 15, CABI Banana Book, (in press).Google Scholar
  69. Smith, J. J., Jones, D. R., Karamura, E., Blomme, G. & Turyagyenda, F. L. (2008). An analysis of the risk from Xanthomonas campestris pv. musacearum to banana cultivation in Eastern, Central and Southern Africa. Bioversity International, Montpellier, France.Google Scholar
  70. Spilsbury, J., Jagwe, J., Ferris, S. & Luwandagga, D. (2002). Evaluating the marketing opportunities for banana and its products in the principle banana growing countries of ASARECA. Uganda Report. International Institute of Tropical Agriculture – Foodnet, 60 pp.Google Scholar
  71. Ssekiwoko, F., Taligola, H. K., & Tushmereirwe, W. K. (2006a). Xanthomonas campestris pv. musacearum host range in Uganda. African Crop Science Journal, 14, 111–120.Google Scholar
  72. Ssekiwoko, F., Turyagyenda, L. F., Mukasa, H., Eden-Green, S. & Blomme, G. (2006b). Systemicity of Xanthomonas campestris pv. musacearum in flower-infected banana plants. XVII ACORBAT International Meeting: Banana: A Sustainable Business. Joinville, Santa Catarina, Brazil, October 15–20, 2006. pp. 789-793.Google Scholar
  73. Ssekiwoko, F., Turyagyenda, L. F., Mukasa, H., Eden-Green, S., & Blomme, G. (2010). Spread of Xanthomonas campestris pv. musacearum in banana (Musa spp.) plants following infection of the male inflorescence. Acta Horticulturae, 879, 349–356.Google Scholar
  74. Thwaites, R., Eden-Green, S., & Black, R. (2000). Diseases caused by bacteria. In D. R. Jones (Ed.), Diseases of Banana, Abacá and Enset (pp. 213–239). Wallingford: CABI Publishing.Google Scholar
  75. Tinzaara, W., Gold, C. S., Ssekiwoko, F., Tushmùereirwe, W., Bandyopadhyay, R., Abera, A., & Eden-Green, S. J. (2006a). Role of insects in the transmission of banana bacterial wilt. African Crop Science Journal, 14, 105–110.Google Scholar
  76. Tinzaara, W., Gold, C. S., Tushmereirwe, W., Bandyopadhyay, W., & Eden-Green, S. (2006b). The possible roles of insects in the transmission of banana Xanthomonas wilt. In: Saddler, G., Elphinstone, J., & Smith, J. (eds) Programme and Abstract Book of the 4th International Bacterial Wilt Symposium, 17th-20th July 2006, The Lakeland Conference Centre, Central Science laboratory, York, UK, p. 60.Google Scholar
  77. Tinzaara, W., Karamura, E. B., Blomme, G., Jogo, W., Ocimati, W., & Kubiriba, J. (2013a). Communication approaches for sustainable management of banana Xanthomonas wilt in east and Central Africa. In G. Blomme, P. van Asten, & B. Vanlauwe (Eds.), Banana systems in the humid highlands of sub-Saharan Africa: Enhancing resilience and productivity (pp. 224–234). Wallingford: CABI.Google Scholar
  78. Tinzaara, W., Karamura, E. B., Blomme, G., Jogo, W., Ocimati, W., Rietveld, A., Kubiriba, J., & Opio, F. (2013b). Why Sustainable Management of Xanthomonas Wilt of Banana in East and Central Africa Has Been Elusive. In: Van den Bergh et al (Eds), Proc. Int. ISHS-ProMusa Symp. on Bananas and Plantains: Towards Sustainable Global Production and Improved Uses. Acta Horticulturae. 986, 157–164.Google Scholar
  79. Tripathi, L., & Tripathi, J. N. (2009). Relative susceptibility of banana cultivars to Xanthomonas campestris pv. musacearum. African Journal of Biotechnology, 20, 5343–5350.Google Scholar
  80. Tripathi, L., Odipio, J., Tripathi, J. N., & Tusiime, G. (2008). A rapid technique for screening banana cultivars for resistance to Xanthomonas wilt. European Journal of Plant Pathology, 121, 9–19.CrossRefGoogle Scholar
  81. Tripathi, L., Mwangi, M., Abele, S., Aritua, V., Tushemereirwe, W. K., & Bandyopadhyay, R. (2009). Xanthomonas wilt: a threat to banana production in east and central Africa. Plant Disease, 93(5), 440–451.CrossRefGoogle Scholar
  82. Tripathi, L., Mwaka, H., Tripathi, J. N., & Tushemereirwe, W. K. (2010). Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Molecular Plant Pathology, 11, 721–731.PubMedGoogle Scholar
  83. Turyagenda, L. F., Blomme, G., Ssesiwoko, F., Mukasa, H., & Eden-Green, S. J. (2006). On farm assessment of banana bacterial wilt control options. In G. Saddler, J. Elphinstone, J. Smith (Eds.), Programme and Abstract Book of the 4th International Bacterial Wilt Symposium, 17th-20th July 2006, The Lakeside Conference Center, Central Science Laboratory, York, UK. p58.Google Scholar
  84. Turyagyenda, L. F., Blomme, G., Ssekiwoko, F., Karamura, E., Mpiira, S., & Eden-Green, S. (2008). Rehabilitation of banana farms destroyed by Xanthomonas wilt in Uganda. Journal of Applied BioSciences, 8, 230–235.CrossRefGoogle Scholar
  85. Tushemereirwe, W., Kangire, A., Smith, J., Ssesiwoko, F., Nakyanzi, M., Kataama, D., Musiitwa, C., & Karyeija, R. (2003). An outbreak of bacterial wilt on banana in Uganda. InfoMusa, 12, 6–8.Google Scholar
  86. Tushemereirwe, W., Kangire, A., Ssekiwoko, F., Offord, L. C., Crozier, J., Boa, E., Rutherford, M., & Smith, J. J. (2004). First report of Xanthomonas campestris pv. musacearum on banana in Uganda. Plant Pathology, 53, 802.CrossRefGoogle Scholar
  87. Tushmereirwe, W. K., Okaasai, O., Kubiriba, J., Nankinga, C., Muhangi, J., Odoi, N., & Opio, F. (2006). Status of banana bacterial wilt in Uganda. African Crop Science Journal, 14, 73–82.Google Scholar
  88. Were, E., Ramathani, I., Nakato, V., Olal, S., & Beed, F. (2013). Potential of Banana Weevils to transmit Xcm, (in press).Google Scholar
  89. Yirgou, D., & Bradbury, J. F. (1968). Bacterial wilt of enset (Ensete ventricosum) incited by Xanthomonas musacearum sp.n. Phytopathology, 58, 111–112.Google Scholar
  90. Yirgou, D., & Bradbury, J. F. (1974). A note on wilt of banana caused by the enset wilt organism Xanthomonas musacearum. East African Agricultural and Forestry Journal, 40, 111–114.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2014

Authors and Affiliations

  • Guy Blomme
    • 1
  • Kim Jacobsen
    • 2
  • Walter Ocimati
    • 1
  • Fen Beed
    • 3
  • Jules Ntamwira
    • 4
  • Charles Sivirihauma
    • 5
  • Fred Ssekiwoko
    • 6
  • Valentine Nakato
    • 7
  • Jerome Kubiriba
    • 8
  • Leena Tripathi
    • 9
  • William Tinzaara
    • 1
  • Flory Mbolela
    • 10
  • Lambert Lutete
    • 11
  • Eldad Karamura
    • 1
  1. 1.Bioversity InternationalKampalaUganda
  2. 2.Royal Museum for Central AfricaTervurenBelgium
  3. 3.International Institute of Tropical AgricultureDar-es-SalaamTanzania
  4. 4.CIALCA/INERABukavuDR Congo
  5. 5.CIALCA/UCGButemboDR Congo
  6. 6.National Agricultural Research LaboratoriesKampalaUganda
  7. 7.International Institute of Tropical AgricultureKampalaUganda
  8. 8.NAROKawandaUganda
  9. 9.International Institute of Tropical AgricultureNairobiKenya
  10. 10.FAO-BukavuSouth KivuDR Congo
  11. 11.FAO-KinshasaBas CongoDR Congo

Personalised recommendations