Advertisement

European Journal of Plant Pathology

, Volume 139, Issue 2, pp 289–298 | Cite as

Molecular cloning and characterization of cDNA encoding a Translocon-Associated Protein (TRAPδ) from the root-lesion nematode Pratylenchus goodeyi

  • Margarida Pestana
  • Isabel M. de O. Abrantes
  • Manuela Gouveia
Article
  • 224 Downloads

Abstract

The translocon-associated protein (TRAP) complex comprises four subunits (α, β, γ, δ) and is located in the endoplasmic reticulum membrane at translocation sites. The TRAP complex is required for the efficient translocation of substrates and to correct or eliminate misfolded proteins. In this study, we described the cloning and characterization of a cDNA encoding a TRAP from the phytoparasitic nematode Pratylenchus goodeyi (Pg). The full-length cDNA had an estimated size of 690 bp and encodes a 177 amino acid peptide. The deduced protein after sequence analysis codes for TRAPδ subunit homologous to TRAPδ from other nematodes. The Pg-TRAPδ had a signal peptide indicating a possible involvement in the transport and binding of other proteins at the endoplasmic reticulum membrane. The increase in relative expression of Pg-trapδ, assessed by semi-quantitative PCR, was induced over time in nematodes exposed to a nematostatic/nematicide extract of Solanum nigrum, suggesting that this gene product might be influenced by response mechanisms to stress in P. goodeyi. This is the first report of the cloning and characterization of trap cDNA from plant endoparasitic nematodes.

Keywords

Phytoparasitic nematode Banana plant Gene expression Signal peptide TRAP complex 

Notes

Acknowledgments

M. Pestana thanks to CITMA for the awarding of a Doctoral grant (Project n.º 001080/2010/132).

References

  1. Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image Processing with Image J. Biophotonics International, 11, 36–42.Google Scholar
  2. Abrantes, I. M., de, O., de Morais, M. M. N., Paiva, I. M. P., de, F. R., Santos, M. S. N., & de, A. (1976). Análise nematológica de solos e plantas. Ciência Biológica (Portugal), 1, 139–155.Google Scholar
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Atkinson, H. J., Urwin, P. E., & McPherson, M. J. (2003). Engineering plants for nematode resistance. Annual Review of Phytopathology, 41, 615–639.PubMedCrossRefGoogle Scholar
  5. Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340, 783–795.PubMedCrossRefGoogle Scholar
  6. Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., et al. (2013). GenBank. Nucleic Acids Research, 41, D36–D42.PubMedCentralPubMedCrossRefGoogle Scholar
  7. da Rocha Fragoso, R., Lourenço, I. T., Batista, J. A. N., Oliveira-Neto, O. B., Silva, M. C. M., Rocha, T. L., et al. (2009). Meloidogyne incognita: Molecular cloning and characterization of cDNA encoding a cathepsin D-like aspartic proteinase. Experimental Parasitology, 121, 115–123.PubMedCrossRefGoogle Scholar
  8. Davis, E. L., Hussey, R. S., Baum, T. J., Bakker, J., Schots, A., Rosso, M. N., et al. (2000). Nematode parasitism genes. Annual Review of Phytopathology, 38, 365–396.PubMedCrossRefGoogle Scholar
  9. De Luca, F., de Giorgi, C., Di Vito, M., & Lamberti, F. (1996). Sequence analysis of cut-1 gene and of its flanking regions in Meloidogyne artiellia. Nematologia Mediterranea, 24, 125–128.Google Scholar
  10. De Luca, F., Reyes, A., Troccoli, A., & Castillo, P. (2011). Molecular variability and phylogenetic relationships among different species and populations of Pratylenchus (Nematoda: Pratylenchidae) as inferred from the analysis of the ITS rDNA. European Journal of Plant Pathology, 130, 415–426.CrossRefGoogle Scholar
  11. Fons, R. D., Bogert, B. A., & Hegde, R. S. (2003). Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. The Journal of Cell Biology, 160, 529–539.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005). Protein identification and analysis tools on the ExPASy server. In: Walker, J. M., (Ed.), The proteomics protocols handbook. Humana Press. pp. 571–607Google Scholar
  13. Gowen, S., & Quénéhervé, P. (1990). Nematode parasites of bananas, plantains and abaca. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 431–460). Wallingford: CAB International.Google Scholar
  14. Guda, C. (2006). pTARGET: A web server for predicting protein subcellular localization. Nucleic Acids Research, 35, 210–213.CrossRefGoogle Scholar
  15. Guda, C., & Subramaniam, S. (2005). pTARGET: A new method for predicting protein subcellular localization in eukaryotes. Bioinformatics, 21, 3963–3969.PubMedCrossRefGoogle Scholar
  16. Hajarnavis, A., & Durbin, R. (2006). A conserved sequence motif in 3′ untranslated regions of ribosomal protein mRNAs in nematodes. RNA, 12, 1786–1789.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hartmann, E., Görlich, D., Kostka, S., Otto, A., Kraft, R., Knespel, S., et al. (1993). A tetrameric complex of membrane proteins in the endoplasmic reticulum. European Journal of Biochemistry, 214, 375–381.PubMedCrossRefGoogle Scholar
  18. Hegde, R. S., & Kang, S. W. (2008). The concept of translocational regulation. The Journal of Cell Biology, 182, 225–232.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hiss, J. A., & Schneider, G. (2009). Architecture, function and prediction of long signal peptides. Briefings in Bioinformatics, 10, 569–578.PubMedCrossRefGoogle Scholar
  20. Hooper, D. J. (1986). Extraction of nematodes from plant material. In J. F. Southey (Ed.), Laboratory methods for work with plant and soil nematodes (pp. 51–58). London: Her Majesty’s Stationery Office.Google Scholar
  21. Hulbert, S. H., Webb, C. A., Smith, S. M., & Sun, Q. (2001). Resistance gene complexes: evolution and utilization. Annual Review of Phytopathology, 39, 285–312.PubMedCrossRefGoogle Scholar
  22. Jensen, L. J., Skovgaard, M., & Brunak, S. (2002). Prediction of novel archaeal enzymes from sequence-derived features. Protein Science, 11, 2894–2898.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35, 429–432.CrossRefGoogle Scholar
  24. Kapp, K., Schrempf, S., Lemberg, M. K. & Dobberstein, B. (2000). Post-targeting functions of signal peptides. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience. Available from: http://www.ncbi.nlm.nih.gov/books/NBK6322/. [accessed 22 April].
  25. Kozak, M. (1989). The scanning model for translation: an update. The Journal of Cell Biology, 108, 229–241.PubMedCrossRefGoogle Scholar
  26. Laplaze, L., Ribeiro, A., Franche, C., Duhoux, E., Auguy, F., Bogusz, D., et al. (2000). Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Molecular Plant-Microbe Interactions, 13, 113–117.PubMedCrossRefGoogle Scholar
  27. Launikonis, B. S., & Stephenson, D. G. (1997). Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (Yabby) skeletal muscle. The Journal of Physiology, 504, 425–437.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Martínez-Gil, L., Saurí, A., Martin-Renom, M. A., & Mingarro, I. (2011). Membrane protein integration into the endoplasmatic reticulum. FEBS Journal, 278, 3846–3858.PubMedCrossRefGoogle Scholar
  29. Meldal, B. H. M., Debenham, N. J., De Ley, P., De Ley, I. T., Vanfleteren, J. R., Vierstraete, A. R., et al. (2007). An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Molecular Phylogenetics and Evolution, 42, 622–636.PubMedCrossRefGoogle Scholar
  30. Ménétret, J. F., Hegde, R. S., Heinrich, S. U., Chandramouli, P., Ludtke, S. J., Rapoport, T. A., et al. (2005). Architecture of the ribosome–channel complex derived from native membranes. Journal of Molecular Biology, 348, 445–457.PubMedCrossRefGoogle Scholar
  31. Ménétret, J. F., Hegde, R. S., Aguiar, M., Gygi, S. P., Park, E., Rapoport, T. A., et al. (2008). Single copies of Sec61 and TRAP associate with a non-translating mammalian ribosome. Structure, 16, 1126–1137.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Mesbah, K., Camus, A., Babinet, C., & Barra, J. (2006). Mutation in the Trapα/Ssr1 gene, encoding translocon-associated protein. Results in outflow tract morphogenetic defects. Molecular Cell Biology, 26, 7760–7771.CrossRefGoogle Scholar
  33. Miyazaki, K., Fujita, T., Ozaki, T., Kato, C., Kurose, Y., Sakamoto, M., et al. (2004). NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. Journal of Biological Chemistry, 297, 11327–11335.CrossRefGoogle Scholar
  34. Nagasawa, K., Higashi, T., Hosokawa, N., Kaufman, R. J., & Nagata, K. (2007). Simultaneous induction of the four subunits of the TRAP complex by ER stress accelerates ER degradation. EMBO reports, 8, 483–489.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Nakai, K., & Kanehisa, M. (1992). A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 14, 897–911.PubMedCrossRefGoogle Scholar
  36. Pestana, M., Rodrigues, M., Teixeira, L., de O Abrantes, I. M., Gouveia, M., & Cordeiro, N. (2013). In vitro evaluation of nematicidal properties of Solanum sisymbriifolium and S nigrum extracts on Pratylenchus goodeyi. Nematology. doi: 10.1163/15685411-00002743.Google Scholar
  37. Pinochet, J., Fernandez, C., & Sarah, J. L. (1995). Influence of temperature on in vitro reproduction of Pratylenchus coffeae, P. goodeyi and Radopholus similis. Fundamental and Applied Nematology, 18, 391–392.Google Scholar
  38. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., et al. (2005). InterProScan: protein domains identifier. Nucleic Acids Research, 33, W116–W120.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Rosso, M. N., Favery, B., Piotte, C., Arthaud, L., De Boer, J. M., Hussey, R. S., et al. (1999). Isolation of a cDNA encoding a β-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Molecular Plant-Microbe Interactions, 12, 585–591.PubMedCrossRefGoogle Scholar
  40. Rost, B., & Liu, J. (2003). The PredictProtein server. Nucleic Acids Res., 31, 3300–3304.CrossRefGoogle Scholar
  41. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.Google Scholar
  42. Sher, S. A., & Allen, M. W. (1953). Revision of the genus Pratylenchus (Nematoda: Tylenchidae). University of California Publications in Zoology, 57, 441–469.Google Scholar
  43. Stover, R., & Simmonds, N. W. (1987). Bananas. Essex: Longman scientific and technical, harlow. 468 pp.Google Scholar
  44. Thomas-Hall, S., Campbell, P. R., Carlens, K., Kawanish, E., Swennen, R., Sági, L., et al. (2007). Phylogenetic and molecular analysis of the ribulose-1,5-bisphosphate carboxylase small subunit gene family in banana. Journal of Experimental Botany, 58, 2685–2697.PubMedCrossRefGoogle Scholar
  45. Waeyenberge, L., Ryss, A., Moens, M., Pinochet, J., & Vrain, T. C. (2000). Molecular characterization of 18 Pratylenchus species using rDNA restriction fragment length polymorphism. Nematology, 2, 135–142.CrossRefGoogle Scholar
  46. Wassler, M., Jonasson, I., Persson, R., & Fries, E. (1987). Differential permeabilization of membranes by saponin treatment of isolated rat hepatocytes. Biochemical Journal, 247, 407–415.PubMedCentralPubMedGoogle Scholar

Copyright information

© KNPV 2014

Authors and Affiliations

  • Margarida Pestana
    • 1
    • 2
  • Isabel M. de O. Abrantes
    • 3
  • Manuela Gouveia
    • 2
  1. 1.Madeira Agricultural Laboratory, RAMSanta CruzPortugal
  2. 2.Centre of Life SciencesUniversity of MadeiraFunchalPortugal
  3. 3.IMAR-CMA, Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations