European Journal of Plant Pathology

, Volume 138, Issue 2, pp 347–359 | Cite as

Ilyonectria palmarum sp. nov. causing dry basal stem rot of Arecaceae

  • Dalia Aiello
  • Vladimiro Guarnaccia
  • Alessandro Vitale
  • Gabriella Cirvilleri
  • Giovanni Granata
  • Filomena Epifani
  • Giancarlo Perrone
  • Giancarlo Polizzi
  • Johannes Z. Groenewald
  • Pedro W. Crous


During surveys conducted in 2010–2013, a complete breakage or bending of the trunk and a dry basal stem rot were observed on containerised Brahea armata, B. edulis, Howea forsteriana and Trachycarpus princeps plants in different nurseries located in eastern Sicily (southern Italy). A cylindrocarpon-like species was consistently obtained from diseased palm tissues, while known pathogens of these hosts such as Ganoderma, Phytophthora and Thielaviopsis were not found associated with symptomatic tissues or isolated on standard or selective media. A total of 40 cylindrocarpon-like isolates were collected and characterised based on morphology and DNA phylogeny. Multigene analyses based on the β-tubulin, histone H3, translation elongation factor 1-α, and the internal transcribed spacers (ITS1, 5.8S, ITS2) genes facilitated the identification of a new species, described here as Ilyonectria palmarum. The pathogenicity of one representative isolate collected from each palm species was tested on plants cultivated under nursery conditions and in a growth chamber. All isolates were pathogenic to B. armata, B. edulis, H. forsteriana, and T. princeps and symptoms identical to that observed in nurseries were reproduced. Dry basal stem rot and stem bending caused by Ilyonectria palmarum represents a potentially serious problem for nurseries cultivating containerised palms.


Cylindrocarpon-like asexual morph Multi-gene analysis Pathogenicity Trunk bending Trunk breakage 



This work was supported by MIUR project number PON01_01611 (SO.PRO.ME: Sustainable production of potted plants in Mediterranean environment”). The authors would like to thank Gaetano Stea for his valuable technical help in DNA sequencing.

Supplementary material

10658_2013_334_MOESM1_ESM.ppt (69 kb)
Fig. S3 Phylogenetic tree resulting from the Maximum Likelihood method. The best tree resulting in the highest log likelihood (−6807.4661) is shown; it was derived from the combined sequence data of three loci (benA, TEF-1a and HIS3) of 17 Ilyonectria/Neonectria reference species, 40 strains of Ilyonectria palmarum sp. nov., and the outgroup strain of Campylocarpon fasciculare. Bootstrap values >70 % are shown at the nodes (PPT 69 kb)


  1. Agustí-Brisach, C., Gramaje, D., León, M., García-Jiménez, J., & Armengol, J. (2011). Evaluation of vineyard weeds as potential hosts of black-foot and Petri disease pathogens. Plant Disease, 95, 803–810.CrossRefGoogle Scholar
  2. Alaniz, S., León, M., Vincent, A., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2007). Characterization of Cylindrocarpon species associated with black foot disease of grapevine in Spain. Plant Disease, 91, 1187–1193.CrossRefGoogle Scholar
  3. Alaniz, S., Armengol, J., León, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113, 16–23.PubMedCrossRefGoogle Scholar
  4. Ariffin, D., & Idris, A. S. (1991). A selective medium for the isolation of Ganoderma from diseased tissue. Proceedings of the 1991 PIPOC International Palm Oil Conference-Progress, Prospects and Challenges Towards the 21st Century (Model I-Agriculture), MPOB, Malaysia, pp. 517–519.Google Scholar
  5. Booth, C. (1966). The genus Cylindrocarpon. Mycological Papers, 104, 1–56.Google Scholar
  6. Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012a). Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.CrossRefGoogle Scholar
  7. Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012b). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116, 62–80.PubMedCrossRefGoogle Scholar
  8. Cacciola, S. O., Pane, A., Faedda, R., Rizza, C., Badalà, F., & Magnano di San Lio, G. (2011). Bud and root rot of windmill palm (Trachycarpus fortunei) caused by simultaneous infections of Phytophthora palmivora and P. nicotianae in Sicily. Plant Disease, 95, 769.CrossRefGoogle Scholar
  9. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.CrossRefGoogle Scholar
  10. Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chong, K. P., Lum, M. S., Foong, C. P., Wong, C. M. V. L., Atong, M., & Rossall, S. (2011). First identification of Ganoderma boninense isolated from Sabah based on PCR and sequence homology. African Journal of Biotechnology, 10, 14718–14723.CrossRefGoogle Scholar
  12. Crous, P. W., Groenewald, J. Z., Risède, J. M., Simoneau, P., & Hywel-Jones, N. (2004). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–430.Google Scholar
  13. Crous, P. W., Verkleij, G. J. M., Groenewald, J. Z., & Samson, R. A. (Eds.). (2009). Fungal biodiversity. CBS Laboratory Manual Series 1. Utrecht: Centraalbureau voor Schimmelcultures.Google Scholar
  14. Dart, N. L., & Weeda, S. M. (2011). First report of Cylindrocarpon macrodidymum on Acer palmatum in Virginia. Plant Disease, 95, 1592.CrossRefGoogle Scholar
  15. Downer, A. J., Uchida, J. Y., Hodel, D. R., & Elliott, M. L. (2009). Lethal palm diseases common in the United States. HortTechnology, 19, 710–716.Google Scholar
  16. Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., et al. (2011). Geneious v5.4. from
  17. Elliott, M. L. (2004). Ganoderma butt rot. In M. L. Elliott, T. K. Broschat, J. Y. Uchida, & G. W. Simone (Eds.), Compendium of ornamental palm diseases and disorders (pp. 22–25). Saint Paul: APS Press.Google Scholar
  18. Elliott, M. L. (2006). Thielaviopsis trunk rot of palm. University of Florida Institute of Food and Agricultural Science, Fact Sheet. PP-219.Google Scholar
  19. Elliott, M. L., & Broschat, T. K. (2001). Observations and pathogenicity experiments on Ganoderma zonatum in Florida. Palms, 45, 62–72.Google Scholar
  20. Erper, I., Agustí-Brisach, C., Tunali, B., & Armengol, J. (2013). Characterization of root rot disease of kiwifruit in the BlacK Sea region of Turkey. European Journal of Plant Pathology, 136, 291–300.CrossRefGoogle Scholar
  21. Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology, 50, 431–455.Google Scholar
  22. Halleen, F., Schroers, H. J., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2006). Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines. Studies in Mycology, 55, 227–234.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192.Google Scholar
  24. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  25. Jeffers, S. N., & Martin, S. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70, 1038–1043.CrossRefGoogle Scholar
  26. Miller, R. N. G., Holderness, M., Bridge, P. D., Chung, G. F., & Zakaria, M. H. (1999). Genetic diversity of Ganoderma in oil palm plantings. Plant Pathology, 48, 595–603.CrossRefGoogle Scholar
  27. Nylander, J. A. A. (2004). MrModeltest 2.0. Program distributed by the author. Uppsala, Sweden: Uppsala University.Google Scholar
  28. O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.PubMedCrossRefGoogle Scholar
  29. Özben, S., Demirci, F., Değirmenci, K., & Uzunok, S. (2012). First report of Cylindrocarpon macrodidymum associated with black foot disease of grapevine in Turkey. Plant Disease, 96, 762.CrossRefGoogle Scholar
  30. Petit, E., Barriault, E., Baumgartner, K., Wilcox, W. F., & Rolshausen, P. E. (2011). Cylindrocarpon species associated with black-foot of grapevine in northeastern United States and southeastern Canada. American Journal of Enology and Viticulture, 62, 177–183.CrossRefGoogle Scholar
  31. Polizzi, G., Castello, I., Vitale, A., Catara, V., & Tamburino, V. (2006). First report of Thielaviopsis trunk rot of date palm in Italy. Plant Disease, 90, 972.CrossRefGoogle Scholar
  32. Polizzi, G., Castello, I., Aiello, A., & Vitale, A. (2007). First report of stem bleeding and trunk rot of kentia palm caused by Thielaviopsis paradoxa in Italy. Plant Disease, 91, 1057.CrossRefGoogle Scholar
  33. Rayner, R. W. (1970). A mycological colour chart. CMI and British Mycological Society. Surrey, England: Kew.Google Scholar
  34. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.PubMedCrossRefGoogle Scholar
  35. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedGoogle Scholar
  36. Sánchez, M. E., Lora, F., & Trapero, A. (2002). First report of Cylindrocarpon destructans as a root pathogen of Mediterranean Quercus species in Spain. Plant Disease, 86, 693.CrossRefGoogle Scholar
  37. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241–6246.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Schroers, H. J., Žerjav, M., Munda, A., Halleen, F., & Crous, P. W. (2008). Cylindrocarpon pauciseptatum sp. nov. with notes on Cylindrocarpon species with wide, predominantly 3-septate macroconidia. Mycological Research, 112, 82–92.Google Scholar
  39. Seifert, K. A., McMullen, C. R., Yee, D., Reeleder, R. D., & Dobinson, K. F. (2003). Molecular differentiation and detection of ginseng-adapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology, 93, 1533–1542.PubMedCrossRefGoogle Scholar
  40. Simone, G. W. (2004). Thielaviopsis diseases (black scorch, stem bleeding, dry basal rot, trunk rot, heart rot). In M. L. Elliott, T. K. Broschat, J. Y. Uchida, & G. W. Simone (Eds.), Compendium of ornamental palm diseases and disorders (pp. 37–38). Saint Paul: APS Press.Google Scholar
  41. Swofford, D. L. (2003). PAUP*. Phylogenetic analysis using parsimony (*and their methods). Version 4. Sunderland: Sinauer Associates.Google Scholar
  42. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.PubMedGoogle Scholar
  43. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefGoogle Scholar
  44. Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., & Geiser, D. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, 31, 21–32.PubMedCrossRefGoogle Scholar
  45. Uchida, J. Y. (2004). Phytophthora diseases. In M. L. Elliott, T. K. Broschat, J. Y. Uchida, & G. W. Simone (Eds.), Compendium of ornamental palm diseases and disorders (pp. 29–32). Saint Paul: APS Press.Google Scholar
  46. Úrbez-Torres, J. R., Peduto, F., & Gubler, W. D. (2012). First report of Ilyonectria macrodidyma causing root rot of olive trees (Olea europaea) in California. Plant Disease, 96, 1378.CrossRefGoogle Scholar
  47. Vitale, A., Aiello, D., Guarnaccia, V., Perrone, G., Stea, G., & Polizzi, G. (2012). First outbreak of root rot caused by Neonectria (Ilyonectria) macrodidyma on avocado (Persea americana) in Europe. Journal of Phytopathology, 160, 156–159.CrossRefGoogle Scholar
  48. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic.Google Scholar
  49. Wong, L. C., Bong, C. F. J., & Idris, A. S. (2012). Ganoderma species associated with basal stem rot disease of oil palm. American Journal of Applied Sciences, 9, 879–885.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Dalia Aiello
    • 1
  • Vladimiro Guarnaccia
    • 1
  • Alessandro Vitale
    • 1
  • Gabriella Cirvilleri
    • 1
  • Giovanni Granata
    • 2
  • Filomena Epifani
    • 3
  • Giancarlo Perrone
    • 3
  • Giancarlo Polizzi
    • 1
  • Johannes Z. Groenewald
    • 4
  • Pedro W. Crous
    • 4
    • 5
    • 6
  1. 1.Dipartimento di Gestione dei Sistemi Agroalimentari e Ambientali, Sezione Patologia VegetaleUniversity of CataniaCataniaItaly
  2. 2.Formerly, Dipartimento di Gestione dei Sistemi Agroalimentari e Ambientali, Sezione Patologia VegetaleUniversity of CataniaCataniaItaly
  3. 3.Istituto di Scienze delle Produzioni Alimentari (ISPA)BariItaly
  4. 4.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands
  5. 5.Laboratory of PhytopathologyWageningen University and Research Centre (WUR)WageningenThe Netherlands
  6. 6.Microbiology, Department of BiologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations