European Journal of Plant Pathology

, Volume 138, Issue 2, pp 215–222 | Cite as

Pathogenicity of phylogenetic species in the Fusarium graminearum complex on soybean seedlings in Argentina

  • Germán G. Barros
  • María S. Alaniz Zanon
  • María L. Chiotta
  • María M. Reynoso
  • María M. Scandiani
  • Sofía N. Chulze


Soybean (Glycine max L.) is one of the main crops in Argentina. Most of the studies of pathogenicity in the Fusarium graminearum complex have focused on strains isolated from wheat and maize, and there is little information on strains isolated from soybean. Our objective in the present study was to compare the pathogenicity among soybean isolates of different phylogenetic species within the Fusarium graminearum complex on soybean seedlings under controlled conditions. Six strains representing three different phylogenetic species (F. graminearum, F. meridionale and F. cortaderiae) were identified by partial sequencing of the Translation Elongation Factor -1α gene (TEF-1) and evaluated for pathogenicity. All six strains reduced emergence, mainly by causing pre-emergence damping-off, seedling height and root dry weight and produced abnormal seedlings. The mean disease severity averaged across all isolates was approximately 3.0 in a 0–4 rating scale where 0 = healthy seedling and 4 = dead seedling. Significant differences in pathogenicity were observed among F. graminearum, F. meridionale and F. cortaderiae. These results are consistent with the hypothesis that different phylogenetic species within the Fusarium graminearum complex isolated from soybean are pathogenic under controlled conditions to soybean seedlings in Argentina. The present study demonstrates for the first time the pathogenic effect of F. meridionale on soybean in Argentina.


Fusarium graminearum F. meridionale F. cortaderiae Elongation factor 1-α Glycine max L Pathogenicity 



This work was supported by grants from Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto (SECyT-UNRC 2010–2012) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2457/11). Alaniz Zanon, M.S and Chiotta, M.L. are fellow of CONICET and Barros, G., Reynoso, M.M. and Chulze, S. are members of the Research Career of CONICET. The authors thank Dr. John Leslie for revision of the manuscript.


  1. Akinsanmi, O. A., Chakraborty, S., Backhouse, D., & Simpfendorfer, S. (2007). Passage through alternative hosts changes the fitness of Fusarium graminearum and Fusarium pseudograminearum. Environmental Microbiology, 9, 512–520.PubMedCrossRefGoogle Scholar
  2. Alvarez, C. L., Somma, S., Proctor, R. H., Stea, G., Mulè, G., Logrieco, A., et al. (2011). Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina. Toxins, 3, 1294–1309.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baird, R. E., Mullinix, B. G., Perry, A. B., & Lang, M. L. (1997). Diversity and longevity of the soybean debris mycobiota in a no-tillage system. Plant Disease, 81, 530–534.CrossRefGoogle Scholar
  4. Barros, G., Oviedo, M. S., Ramirez, M. L., & Chulze, S. (2011). Safety aspects in soybean food and feed chains: Fungal and mycotoxins contamination. In N. Tzi-Bun (Ed.), Soybean -biochemistry, chemistry and physiology (pp. 7–20). Rijeka: InTech-Open Access Publisher.Google Scholar
  5. Barros, G., Alaniz Zanon, M. S., Abod, A., Oviedo, M. S., Ramirez, M. L., Reynoso, M. M., et al. (2012). Natural deoxynivalenol occurrence and genotype and chemotype determination of a field population of the Fusarium graminearum complex associated with soybean in Argentina. Food Additives and Contaminants, 29, 293–303.PubMedCrossRefGoogle Scholar
  6. Broders, K. D., Lipps, P. E., Paul, P. A., & Dorrance, A. E. (2007). Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling in Ohio. Plant Disease, 91, 1155–1160.CrossRefGoogle Scholar
  7. Chulze, S., Ramirez, M. L., Farnochi, M. C., Pascale, M., Visconti, A., & March, G. (1996). Fusarium and fumonisins occurrence in Argentinian corn at different ear maturity stages. Journal Agricultural and Food Chemistry, 44, 2797–2801.CrossRefGoogle Scholar
  8. Diaz Arias, M. M., Leandro, L. F., & Munkvold, G. P. (2013). Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans. Phytopathology, 103, 822–832.CrossRefGoogle Scholar
  9. Ellis, M. L., Broders, K. D., Paul, P. A., & Dorrance, A. E. (2011). Infection of soybean seed by Fusarium graminearum and effect of seed treatments on disease under controlled conditions. Plant Disease, 95, 401–407.CrossRefGoogle Scholar
  10. Fernandez, M. R., & Fernandes, J. M. C. (1990). Survival of wheat pathogens in wheat and soybean residues under conservation tillage systems in southern and central Brazil. Canadian Journal of Plant Pathology, 12, 289–294.CrossRefGoogle Scholar
  11. García-Romera, I., García-Garrido, J. M., Martin, J., Fracchia, S., Mujica, M. T., Godeas, A., et al. (1998). Interactions between saprophitic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis, 24, 235–245.Google Scholar
  12. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium, 41, 95–98.Google Scholar
  13. Jacobsen, B. J., Harbin, K. S., Swanson, S. P., Lambert, R. J., Beasley, V. R., Sinclair, J. B., et al. (1995). Occurrence of fungi and mycotoxins associated with field mold damage soybeans in the Midwest. Plant Disease, 79, 86–88.CrossRefGoogle Scholar
  14. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames: Blackwell Professional.Google Scholar
  15. Marinelli, A., Oddino, C., García, J., Tarditi, L., Ferrari, S., & D’Eramo, L. et al. (2010). Podredumbre del tallo y raíz del maíz en la región centro sur de Córdoba. IX Congreso Nacional de Maíz. Simposio Nacional de Sorgo. 17–19 de Noviembre de 2010. Rosario, Argentina. pp. 22–24.Google Scholar
  16. Martinelli, J. A., Bocchese, C. A. C., Xie, W., O’Donnell, K., & Kistler, H. C. (2004). Soybean pod blight and root rot caused by lineages of Fusarium graminearum and the production of mycotoxins. Fitopatolia Brasileira, 29, 492–498.CrossRefGoogle Scholar
  17. Miller, J. D., Culley, J., Fraser, K., Hubbard, S., Meloche, F., Ouellet, T., et al. (1998). Effect of tillage practices on Fusarium head blight of wheat. Canadian Journal of Plant Pathology, 20, 95–103.CrossRefGoogle Scholar
  18. Munkvold, G. P. (2003). Cultural and genetic approaches to managing mycotoxins in maize. Annual Review of Phytopathology, 41, 99–116.PubMedCrossRefGoogle Scholar
  19. Nirenberg, H. I. (1976). Untersuchungen über die morphologische und biologisch Diffrenzieerum in der Fusarium Sekion Lisiola. Mitteilungen aus der Biologischen Bundesanstalt Für Land- und Forstwirtschaft, 169, 1–117.Google Scholar
  20. O’Donnell, K., Kistler, H. C., Tacke, B. K., & Casper, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences USA, 97, 7905–7910.CrossRefGoogle Scholar
  21. O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623.PubMedCrossRefGoogle Scholar
  22. O’Donnell, K., Ward, T. J., Aberra, D., Kistler, H. C., Aoki, T., Orwig, N. G., et al. (2008). Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genetics and Biology, 45, 1514–1522.PubMedCrossRefGoogle Scholar
  23. Osorio, J. A., & McGee, D. C. (1992). Effect of freezing damage on soybean seed mycoflora and germination. Plant Disease, 76, 879–882.CrossRefGoogle Scholar
  24. Palazzini, J. M., Groenenboom-de Haas, B. H., Torres, A. M., Köhl, J., & Chulze, S. N. (2012). Biocontrol and population dynamics of Fusarium spp. on wheat stubble in Argentina. Plant Pathology. doi: 10.1111/j.1365-3059.2012.02686.x.Google Scholar
  25. Pengue, W. (2005). Transgenic crops in Argentina: the ecological and social debt. Bulletin of Science Technology Society, 25, 314–322.CrossRefGoogle Scholar
  26. Peruzzo, A., Pioli, R., Montiel, C., Lurá, M. C. & Gonzalez, A. M. (2011). Transmission de deoxinivalenol a la harina de soja por infecciones de Fusarium graminearum en invernadero. V Congreso de la soja del Mercosur. 14–16 de septiembre. Rosario, Argentina. pp. 1–4Google Scholar
  27. Pioli, R. N., Mozzoni, L., & Morandi, E. N. (2004). First report of pathogenic association between Fusarium graminearum and soybean. Plant Disease, 88, 220.CrossRefGoogle Scholar
  28. Rahjoo, V., Zad, J., Javan-Nikkhah, M., Mirzadi Gohari, A., Okhovvat, S. M., Bihamta, M. R., et al. (2008). Morphological and molecular identification of Fusarium isolated from maize ears in Iran. Journal of Plant Pathology, 90, 463–468.Google Scholar
  29. Ramirez, M. L., Reynoso, M. M., Farnochi, M. C., Torres, A. M., Leslie, J. F., & Chulze, S. N. (2007). Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Additives and Contaminants, 24, 1115–1120.PubMedCrossRefGoogle Scholar
  30. Sampietro, D. A., Marín, P., Iglesias, J., Presello, D. A., Vattuone, M. A., Catalan, C. A. N., et al. (2010). A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biology, 114, 74–81.PubMedCrossRefGoogle Scholar
  31. Sampietro, D. A., Díaz, C. G., Gonzalez, V., Vattuone, M. A., Ploper, L. D., Catalan, C. A., et al. (2011). Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. International Journal of Food Microbiology, 145, 359–364.PubMedCrossRefGoogle Scholar
  32. Sarver, B., Ward, T., Gale, L., Broz, K., Kistler, H. C., Aoki, T., et al. (2011). Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology, 48, 1096–1107.PubMedCrossRefGoogle Scholar
  33. SAS Institute. (1998). SAS user guide. Cary: SAS Institute Inc.Google Scholar
  34. Singleton, L. L., Mihail, J. D., & Rush, C. M. (1993). Methods for research on soilborne phytopahogenic fungi (2nd ed.). St. Paul: American Phytopathological Society.Google Scholar
  35. Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., et al. (2007). Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology, 44, 1191–1204.PubMedCrossRefGoogle Scholar
  36. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ward, T. D., Clear, R. M., Rooney, A. P., O’Donnell, K., Gaba, D., Patrick, S., et al. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45, 473–484.PubMedCrossRefGoogle Scholar
  38. Wicklow, D. T., Bennet, G. A., & Shotwell, O. L. (1987). Secondary invasion of soybean by Fusarium graminearum and result in mycotoxin contamination. Plant Disease, 71, 1146.CrossRefGoogle Scholar
  39. Xue, A. G., Cober, E., Voldeng, H. D., Babcock, C., & Clear, R. M. (2007). Evaluation of the pathogenicity of Fusarium graminearum and Fusarium pseudograminearum on soybean seedlings under controlled conditions. Canadian Journal of Plant Pathology, 29, 35–40.CrossRefGoogle Scholar
  40. Yli-Mattila, T., Gagkaeva, T., Ward, T. J., Aoki, T., Kistler, H. C., & O’Donnell, K. (2009). A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia, 101, 841–852.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Germán G. Barros
    • 1
  • María S. Alaniz Zanon
    • 1
  • María L. Chiotta
    • 1
  • María M. Reynoso
    • 1
  • María M. Scandiani
    • 2
  • Sofía N. Chulze
    • 1
  1. 1.Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Laboratorio Agrícola Río ParanáSan PedroArgentina

Personalised recommendations