Skip to main content
Log in

Proteomic analysis of Colletotrichum kahawae-resistant and susceptible coffee fruit pericarps

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Coffee berry disease (CBD) is caused by the fungus Colletotrichum kahawae and is restricted to the African continent, where it generates losses of up to 80 % of coffee production. Weather conditions in certain growing areas at high altitudes in Colombia appear to be very favourable for the development of this disease. Certain genotypes of Coffee arabica are resistant to this pathogen, such as the Timor Hybrid and some Ethiopian accessions. It is important to identify the proteins in these coffee genotypes that are associated with resistance to this fungus. Therefore, we compared the proteomes of two genotypes that are resistant to different isolates of C. kahawae with the proteome of the susceptible coffee genotype Caturra. We optimized the methodology applied for the extraction, cleaning and purification of proteins from the green fruit pericarp at 150 to 170 days after flowering. Through two-dimensional differential gel electrophoresis, proteomic map images were obtained for the resistant and susceptible genotypes. Fifty-two protein spots that were significantly different between the resistant and susceptible genotypes were detected. These protein spots were isolated and sequenced via mass spectrometry. The sequence analysis identified 14 proteins in the Timor Hybrid and 14 in CCC1147 that were associated with resistance and pathogen defence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril, N., Gion, J. M., Kerner, R., Muller-Starck, G., Navarro, M. R., Plomion, C., et al. (2011). Review: proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 72, 1219–1242.

    Article  CAS  PubMed  Google Scholar 

  • Aouni, A., Matsukura, C., Ezura, H., & Asamizu, E. (2012). Characterization of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles. Gene, 493(1), 36–43.

    Article  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Damerval, C., de Vienne, D., Zivy, M., & Thiellement, H. (1986). Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling protein. Electrophoresis, 7, 52–54.

    Article  CAS  Google Scholar 

  • Daub, M. E., & Ehrenshaft, M. (2000). The photoactivated cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annual Review of Phytopathology, 38, 461–490.

    Article  CAS  PubMed  Google Scholar 

  • Dunwell, J. M. (1998). Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnology and Genetic Engineering Reviews, 15, 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, K., Kumar, A., Kriseleit, D., Kloos, D. U., Phillips, M. S., & Ganal, M. W. (2002). The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. The Plant Journal, 31(2), 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Franco, O. V., Pelegrini, P. B., Gomes, C. P., Souza, A., Costa, F. T., Domoni, G., et al. (2009). Proteomic evaluation of coffee zygotic embryos in two different stages of seed development. Plant Physiology and Biochemistry, 47, 1046–1050.

    Article  CAS  PubMed  Google Scholar 

  • Gabriëls, S. H. E. J., Takken, F. L. W., Vossen, J. H., de Jong, C. F., Liu, Q., Turk, S. C. H. J., et al. (2006). cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Molecular Plant-Microbe Interactions, 19(6), 567–576.

    Article  PubMed  Google Scholar 

  • Gil-Agusti, M. T., Campostrini, N., Zolla, L., Ciambella, C., Invernizzi, C., & Righetti, P. G. (2005). Two-dimensional mapping as a tool for classification of green coffee bean species. Proteomics, 5, 710–718.

    Article  CAS  PubMed  Google Scholar 

  • Gobom, J., Schuerenberg, M., Mueller, M., Theiss, D., Lehrach, H., & Nordhoff, E. (2001). α-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI/MS peptide analysis in proteomic. Analytical Chemistry, 73, 434–438.

    Article  CAS  PubMed  Google Scholar 

  • Jorrin, J. V., Maldonado, A. M., & Castillejo, M. A. (2007). Plant proteome analysis: a 2006 update. Proteomics, 7, 2947–2962.

    Article  CAS  PubMed  Google Scholar 

  • Kariola, T., Nrader, G., Li, J., & Palva, E. T. (2005). Clorophyllase 1, a damage control enzyme, affects the balance between defense pathway in plants. Plant Cell, 17, 282–294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawchuk, L. M., Hachey, J., Lynch, D. R., Kulcsar, F., van Rooijen, G., Waterer, D. R., et al. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences, 98(11), 6511–6515.

    Article  CAS  Google Scholar 

  • Koshino, L. L., Gomes, C. P., Silva, L. P., Mirian, T., Eira, S., Bloch, C., Jr., et al. (2008). Comparative proteomical analysis of zygotic embryo and endosperm from Coffea arabica Seeds. Journal of Agricultural and Food Chemistry, 56(22), 10922–10926.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Ma, B., Tsai, C. J., Wolfson, H., & Nussinov, R. (1999). Folding funnels and conformation transitions via hinge-bending motions. Cell Biochemistry and Biophysics, 31, 141–164.

    Article  CAS  PubMed  Google Scholar 

  • Kurusu, T., Hamada, J., Hamada, H., Hanamata, S., & Kuchitsu, K. (2010). Roles of calcineurin B-like protein-interacting protein kinases in innate immunity in rice. Plant Signaling & Behavior, 5(8), 1045–1047.

    Article  CAS  Google Scholar 

  • Kvitko, B. H., Park, D. H., Velásquez, A. C., Wei, C. H., Russell, A. B., Martin, G. B., et al. (2009). Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PloS Pathogens, 5(4), 1–16.

    Article  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Mariño, L., Hsu, B., Bauxevanis, A. D., & Landsman, D. (2006). The histones database: a comprehensive resource for histones and histone fold-containing proteins. Proteins: Function and Bioinformatics, 62, 838–842.

    Article  Google Scholar 

  • Melech-Bonfis, S., & Sessa, G. (2010). Tomato MAPKKKe is a positive regulator of cell-death signaling networks associated with plant immunity. The Plant Journal, 64(3), 379–391.

    Article  Google Scholar 

  • Montavon, P., Mauron, A. F., & Duruz, E. (2003). Changes in green coffee protein profiles during roasting. Journal of Agricultural and Food Chemistry, 51, 2335–2343.

    Article  CAS  PubMed  Google Scholar 

  • Morant, M., Bak, S., Møller, B. L., & Werck-Reichhart, D. (2003). Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Current Opinion in Biotechnology, 14, 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Mouen, J. A., Bieysse, D., Njiayouom, I., Deumeni, J. P., Cilas, C., & Notteguem, J. P. (2007). Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. European Journal of Plant Pathology, 119, 391–400.

    Article  Google Scholar 

  • Padmanabhan, V., Dias, D. M., & Newton, R. J. (1997). Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Molecular Biology, 35, 801–807.

    Article  CAS  PubMed  Google Scholar 

  • Parniske, M., & Jones, J. D. (1999). Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Proceedings of the National Academy of Sciences, 96, 5850–5855.

    Article  CAS  Google Scholar 

  • Powers, R. A., Rife, C. L., Schilmiller, A. L., Howe, G. A., & Garavito, R. M. (2006). Structure determination and analysis of acyl-CoA oxidase (ACX1) from tomato. Acta Crystallographica Section D: Biological Crystallographic, 62(6), 683–686.

    Article  Google Scholar 

  • Rossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E., & Williamson, V. M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences, 95(17), 9750–9754.

    Article  CAS  Google Scholar 

  • Salgado-Guimaraes, B. K. (2007). Proteômica diferencial em clones de Coffea canephora sob condições de déficit hídrico. Minas Gerais: Universidad Federal de Vinosa. Programa de Posgraduación en Fisiología Vegetal. 59 páginas. Trabajo de grado: Magíster Scientae em Fisiología Vegetal.

  • Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T., Scofield, S. R., Kim, H. S., Lavelle, D. T., et al. (1996). Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes an lies embedded within the Pto kinase gene cluster. Cell, 86(1), 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M. C., Várzea, V., Guerra-Guimarães, L., Gil Azinheira, H., Fernandez, D., Petitot, A. S., et al. (2006). Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology, 18(1), 119–147.

    Article  CAS  Google Scholar 

  • Takabatake, R., Karita, E., Seo, S., Mitsuhara, I., Kuchitsu, K., & Ohashi, Y. (2007). Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant and Cell Physiology, 48, 414–423.

    Article  CAS  PubMed  Google Scholar 

  • Thiellement, H., Zivy, M., & Plomion, C. (2002). Review: combining proteomic and genetic studies in plant. Journal of Chromatography B, 782, 137–149.

    Article  CAS  Google Scholar 

  • van der Vossen, H. A. M., & Walyaro, D. J. (2009). Additional evidence for oligogenic inheritance of durable host resistance to coffee berry disease (Colletotrichum kahawae) in arabica coffee (Coffea arabica L.). Euphytica, 165, 105–111.

    Article  Google Scholar 

  • Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., et al. (1995). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13, 19–50.

    Article  Google Scholar 

  • Yang, T., Bar-Peled, L., Gebhart, L., Lee, S. G., & Bar-Peled, M. (2009). Identification of galacturonic acid-1-phosphate kinase, a new member of the GHMP kinase superfamily in plants, and comparison with galactose-1-phosphate kinase. Journal of Biological Chemistry, 284(32), 21526–21535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was part of the project “Application of genomic developments for the sustainability of the Colombian coffee crop” under agreement No. 2011–102 between the Ministry of Agriculture and Rural Development of Colombia and the National Federation of Coffee Growers of Colombia (FNC No. 217 of 2011). The authors thank Dr. Ricardo Acuña for collaboration in the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria del Pilar Moncada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolívar Forero, C.P., Moncada, M.d.P. Proteomic analysis of Colletotrichum kahawae-resistant and susceptible coffee fruit pericarps. Eur J Plant Pathol 138, 307–321 (2014). https://doi.org/10.1007/s10658-013-0330-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0330-4

Keywords

Navigation