Skip to main content
Log in

Atmospheric moisture influences on conidia development in Podosphaera xanthii through host-plant morphological responses

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study investigated the effects of atmospheric moisture on conidia development in cucurbit powdery mildew fungus (Podosphaera xanthii) through host-plant responses. Cucumber (Cucumis sativus L.) seedlings were grown under a high vapour pressure deficit (VPD) (3.8 kPa) or a low VPD (0.4 kPa). When the cotyledons had expanded, spores of P. xanthii were inoculated onto the adaxial surface. Inoculated seedlings for both treatments were then placed in a growth chamber maintained at a VPD of 2.1 kPa. The density of visible P. xanthii colonies on the high-VPD-acclimated cotyledons was 0.46 to 0.85 times that of the low-VPD-acclimated cotyledons 7 days after inoculation. It is likely the post-germination behaviour of P. xanthii such as the infection and consequent hyphal development was affected because spore germination did not differ between the treatments. The percentage of adaxial epidermal leaf cells with haustoria was also lower in the seedlings which had acclimated to a higher VPD. The high-VPD-acclimated cotyledons were thicker and had greater dry mass per area. The water potential of cotyledons did not differ between the treatments, although the stomatal conductance of high-VPD-acclimated cotyledons was lower than that of low-VPD-acclimated cotyledons. From these results, we conclude that the inhibition of P. xanthii conidia development on high-VPD-acclimated cotyledons was mainly caused by changes in leaf morphological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aust, F., & v. Hoyningen-Huene, J. (1986). Microclimate in relation to epidemics of powdery mildew. Annual Review of Phytopathology, 24, 491–510.

    Article  Google Scholar 

  • Baker, E. A. (1974). The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytologist, 73, 955–966.

    Article  CAS  Google Scholar 

  • Bandurska, H., & Stroiński, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379–386.

    Article  CAS  Google Scholar 

  • Bañon, S., Fernandez, J. A., Franco, J. A., Torrecillas, A., Alarcón, J. J., & Sánchez-Blanco, M. J. (2004). Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Scientia Horticulturae, 101, 333–342.

    Article  Google Scholar 

  • Bañon, S., Ochoa, J., Franco, J. A., Alarcón, J. J., & Sánchez-Blanco, M. J. (2006). Hardening of oleander seedlings by deficit irrigation and low air humidity. Environmental and Experimental Botany, 56, 36–43.

    Article  Google Scholar 

  • Butt, D. J. (1978). Epidemiology of powdery mildews. In D. M. Spencer (Ed.), The powdery mildews (pp. 51–81). London: Academic.

    Google Scholar 

  • Carroll, J. E., & Wilcox, W. F. (2003). Effects of humidity on the development of grapevine powdery mildew. Phytopathology, 93, 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  • Cook, R. T., Braun, U., & Beales, P. A. (2011). Development of appressoria on conidial germ tubes of Erysiphe species. Mycoscience, 52, 183–197.

    Article  Google Scholar 

  • Elad, Y., Messika, Y., Brand, M., Rav David, D., & Sztejnberg, A. (2007). Effect of microclimate on Leveillula taurica powdery mildew of sweet pepper. Phytopathology, 97, 813–824.

    Article  PubMed  Google Scholar 

  • Farquhar, G. D. (1978). Feedforward responses of stomata to humidity. Australian Journal of Physiology, 5, 787–800.

    Article  Google Scholar 

  • Grantz, D. A. (1990). Plant response to atmospheric humidity. Plant, Cell & Environment, 13, 667–679.

    Article  Google Scholar 

  • Guzman-Plazola, R. A., Davis, R. M., & Marois, J. J. (2003). Effects of relative humidity and temperature on spore germination and development of tomato powdery mildew. Crop Protection, 22, 1157–1168.

    Article  Google Scholar 

  • Harris, J. G., & Manners, J. G. (1983). Influence of relative humidity on germination and disease development in Erysiphe graminis. Transactions of the British Mycological Society, 81, 605–611.

    Article  Google Scholar 

  • Hoad, S. P., Grace, J., & Jeffree, C. E. (1997). Humidity response of cuticular conductance of beech (Fagus sylvatica L.) leaf discs maintained at high relative water content. Journal of Experimental Botany, 48, 1969–1975.

    CAS  Google Scholar 

  • Hull, H. M., Morton, H. L., & Wharrie, J. R. (1975). Environmental influences on cuticle development and resultant foliar penetration. The Botanical Review, 41, 421–452.

    Article  Google Scholar 

  • Jenks, A. M., Eigenbrode, D. S., & Lemieux, B. (2002). Cuticular waxes of Arabidopsis. In C. R. Somerville & E. M. Meyerowitz (Eds.), The Arabidopsis book. Rockville: American Society of Plant Biologists. doi:10.1199/tab.0016.

    Google Scholar 

  • Kenyon, D. M., Dixon, G. R., & Helfer, S. (2002). Effects of relative humidity, light intensity and photoperiod on the colony development of Erysiphe sp. on Rhododendron. Plant Pathology, 51, 103–108.

    Article  Google Scholar 

  • Kerstiens, G. (1996). Signalling across the divide: a wider perspective of cuticular structure–function relationships. Trends in Plant Science, 1, 125–129.

    Article  Google Scholar 

  • Koch, K., Hartmann, K. D., Schreiber, L., Barthlott, W., & Neinhuis, C. (2006). Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environmental and Experimental Botany, 56, 1–9.

    Article  CAS  Google Scholar 

  • Kosma, K. D., Bourdenx, B., Bernard, A., Parsons, P. E., Lü, S., Joubès, J., et al. (2009). The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 151, 1918–1929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lange, O. L., Lösch, R., Schulze, E. D., & Kappen, L. (1971). Responses of stomata to changes in humidity. Planta, 100, 76–86.

    Article  Google Scholar 

  • Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008) Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. European Journal of Plant Pathology 122, 71–89.

    Google Scholar 

  • Mackovà, J., Vašková, M., Macek, P., Hronková, M., Schreiber, L., & Šantrůček, J. (2010). Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environmental and Experimental Botany, 86, 70–75.

    Article  Google Scholar 

  • Mortensen, L. M., & Gislerød, H. R. (2005). Effect of air humidity variation on powdery mildew and keeping quality of cut roses. Scientia Horticulturae, 104, 49–55.

    Article  Google Scholar 

  • Peak, D., & Mott, K. A. (2011). A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant, Cell and Environment, 34, 162–178.

    Article  PubMed  Google Scholar 

  • Quinn, J. A., & Powell, C. C., Jr. (1982). Effects of temperature, light, and relative humidity on powdery mildew of begonia. Phytopathology, 72, 480–484.

    Article  Google Scholar 

  • Reuveni, R., & Rotem, J. (1974). Effect of humidity on epidemiological patterns of the powdery mildew (Sphaerotheca fuliginea) on squash. Phytoparasitica, 2, 25–33.

    Article  Google Scholar 

  • Ristic, Z., & Jenks, M. A. (2002). Leaf cuticle and water loss in maize lines differing in dehydration avoidance. Journal of Plant Physiology, 159, 645–651.

    Article  CAS  Google Scholar 

  • Shibuya, T., Terakura, R., Kitaya, Y., & Kiyota, M. (2006). Effects of low relative humidity and illumination on leaf water status of cucumber seedlings and growth of harvested cuttings. HortScience, 41, 410–413.

    Google Scholar 

  • Shibuya, T., Hirai, N., Sakamoto, Y., & Komuro, J. (2009). Effects of morphological characteristics of Cucumis sativus seedlings grown at different vapor pressure deficits on initial colonization of Bemisia tabaci (Hemiptera: Aleyrodidae). Economic Entomology, 102, 2265–2267.

    Article  CAS  Google Scholar 

  • Shibuya, T., Itagaki, K., Tojo, M., Endo, R., & Kitaya, Y. (2011). Fluorescent illumination with high red-to-far-red ratio improves resistance of cucumber seedlings to powdery mildew. HortScience, 46, 429–431.

    Google Scholar 

  • Sitterly, W. R. (1978). Powdery mildew of cucurbits. In D. M. Spencer (Ed.), The powdery mildews (pp. 359–379). London: Academic.

    Google Scholar 

  • Smith, E. F., Roberts, A. V., & Mottley, J. (1990). The preparation in vitro of chrysanthemum for transplantation to soil. Plant Cell, Tissue and Organ Culture, 21, 141–145.

    Article  Google Scholar 

  • Szwacka, M., Tykarska, T., Wisniewska, A., Kuras, M., Bilski, H., & Malepszy, S. (2009). Leaf morphology and anatomy of transgenic cucumber lines tolerant to downy mildew. Biologia Plantarum, 53, 697–701.

    Article  Google Scholar 

  • te Beest, D. E., Paveley, N. D., Shaw, M. W., & van den Bosch, F. (2008). Disease-weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology, 98, 609–617.

    Article  Google Scholar 

  • Thomas, P. A., Thomas, K., Mothi, P. K., & Senthil Maharajan, V. (1991). Use of lactophenol cotton blue mounts of corneal scrapings as an aid to the diagnosis of mycotic keratitis. Diagnostic Microbiology and Infectious Disease, 14, 219–224.

    Article  CAS  PubMed  Google Scholar 

  • Torre, S., Fjeld, T., Gislerød, H. R., & Moe, R. (2003). Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. Journal of the American Society for Horticultural Science, 128, 598–602.

    Google Scholar 

  • Tuba, Z., Lichtenthaler, H. K., Csintalan, Z., Nagy, Z., & Szente, K. (1996). Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiologia Plantarum, 96, 383–388.

    Article  CAS  Google Scholar 

  • Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology, 95, 1368–1373.

    Article  CAS  PubMed  Google Scholar 

  • Whipps, J. M., & Budge, S. P. (2000). Effect of humidity on development of tomato powdery mildew (Oidium lycopersici) in the glasshouse. European Journal of Plant Pathology, 106, 395–397.

    Article  Google Scholar 

  • Yarwood, C. E. (1957). Powdery mildew. Botanical Review, 23, 235–301.

    Article  Google Scholar 

  • Zabka, V., Stangl, M., Bringmann, G., Vogg, G., Riederer, M., & Hildebrandt, U. (2007). Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytologist, 177, 251–263.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Society for the Promotion of Science (JSPS Grant-in-Aid for Scientific Research (B) (General), 24380140; Grant-in-Aid for JSPS Fellows, 2510391) and by the Osaka Prefecture University graduate school fellowship. We thank our reviewers and editors for their careful reading and valuable suggestions. We also thank Dr. Norio Hirai and MS. Lorien E. Radmer for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Shibuya.

Additional information

Kaori Itagaki and Toshio Shibuya contributed equally to this work. Kaori Itagaki is a research fellow of Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itagaki, K., Shibuya, T., Tojo, M. et al. Atmospheric moisture influences on conidia development in Podosphaera xanthii through host-plant morphological responses. Eur J Plant Pathol 138, 113–121 (2014). https://doi.org/10.1007/s10658-013-0309-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0309-1

Keywords

Navigation