Advertisement

European Journal of Plant Pathology

, Volume 138, Issue 1, pp 103–112 | Cite as

Effect of fusaric acid on the leaf physiology of cucumber seedlings

  • Min Wang
  • Ning Ling
  • Xian Dong
  • Xiaokang Liu
  • Qirong Shen
  • Shiwei Guo
Article

Abstract

The damaging effects of fusaric acid (FA), a fungal toxin produced by Fusarium oxysporum, on cucumber seedlings were investigated in a greenhouse experiment. The accumulation of red ink was introduced as damage determination, the vines and mesophyll cells of the plants treated with high concentration of FA were acutely stained to a deep red colour, and the quantity of red ink in the shoots and roots was significantly increased. The leaf plasma membrane H+-ATPase was significantly inhibited after treatment with FA. Moreover, transmission electron microscopy and electrolyte leakage experiments revealed severe FA-induced injury to leaf cell membranes. The membrane injury and wilt in the leaves of FA-treated plants disturbed the water status, and the leaf water potential was significantly decreased. The present results suggested that FA inhibits the leaf plasma membrane H+-ATPase and reduce the cell membrane integrity of cucumber seedlings, thus leading to leaf wilting and a reduction of the leaf water potential.

Keywords

Fusaric acid Cucumber Membrane injury H+-ATPase Leaf water potential 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31172020 and 41071160). We thank Prof. Dr. Z. Zhong, Nanjing Agricultural University, China, for helpful discussion and critical comments of this work.

References

  1. Abouzeid, M. A., Abd-Elrahman, D. G., Hassan, A. A., Youssef, K. A., & Hammad, A. A. (2003). Use of gamma irradiation to control Fusarium verticillioides producing two known mycotoxins in infected corn. International Journal of Agriculture and Biology, 5(4), 397–404.Google Scholar
  2. Aguirreolea, J., Irigoyen, J., Sanchez-Diaz, M., & Salaverri, J. (1995). Physiological alterations in pepper during wilt induced by Phytophthora capsici and soil water deficit. Plant Pathology, 44(3), 587–596.CrossRefGoogle Scholar
  3. Arias, J. A. (1985). Secretory organelle and mitochondrial alterations induced by fusaric acid in root cells of Zea mays. Physiologial Plant Pathology, 27(2), 149–158.CrossRefGoogle Scholar
  4. Baayen, R. P. (1986). Regeneration of vascular tissues in relation to Fusarium wilt resistance of carnation. European Journal of Plant Pathology, 92(6), 273–285.Google Scholar
  5. Bacon, C. W., Porter, J. K., Norred, W. P., & Leslie, J. F. (1996). Production of fusaric acid by Fusarium species. Applied and Environmental Microbiology, 62(11), 4039–4043.PubMedCentralPubMedGoogle Scholar
  6. Baginski, E. S., Foa, P. P., & Zak, B. (1967). Determination of phosphate: Study of labile organic phosphate interference. Clinica Chimica Acta, 15(1), 155–158.CrossRefGoogle Scholar
  7. Bao, J. R., & Lazarovits, G. (2001). Differential colonization of tomato roots by nonpathogenic and pathogenic Fusarium oxysporum strains may influence Fusarium wilt control. Phytopathology, 91(5), 449–456.PubMedCrossRefGoogle Scholar
  8. Barna, B., & Györgyi, B. (1992). Resistance of young versus old tobacco leaves to necrotrophs, fusaric acid, cell wall-degrading enzymes and autolysis of membrane lipids. Physiological and Molecular Plant Pathology, 40(4), 247–257.CrossRefGoogle Scholar
  9. Batoko, H., de Kerchove d'Exaerde, A., Kinet, J. M., Bouharmont, J., Gage, R. A., Maraite, H., et al. (1998). Modulation of plant plasma membrane H+-ATPase by phytotoxic lipodepsipeptides produced by the plant pathogen Pseudomonas fuscovaginae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1372(2), 216–226.Google Scholar
  10. Beckman, C. H. (2000). Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological and Molecular Plant Pathology, 57(3), 101–110.CrossRefGoogle Scholar
  11. Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of heat tolerance in wheat. Crop Science, 21(1), 43–47.CrossRefGoogle Scholar
  12. Bouizgarne, B., Brault, M., Pennarun, A. M., Rona, J. P., Ouhdouch, Y., El Hadrami, I., et al. (2004). Electrophysiological responses to fusaric acid of root hairs from seedlings of date palm-susceptible and -resistant to Fusarium oxysporum f. sp. albedinis. Journal of Phytopathology, 152(6), 321–324.CrossRefGoogle Scholar
  13. Bouizgarne, B., El-Maarouf-Bouteau, H., Frankart, C., Reboutier, D., Madiona, K., Pennarun, A. M., et al. (2006a). Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytologist, 169(1), 209–218.PubMedCrossRefGoogle Scholar
  14. Bouizgarne, B., El-Maarouf-Bouteau, H., Madiona, K., Biligui, B., Monestiez, M., Pennarun, A. M., et al. (2006b). A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Molecular Plant-microbe Interactions, 19(5), 550–556.PubMedCrossRefGoogle Scholar
  15. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.PubMedCrossRefGoogle Scholar
  16. Curir, P., Guglieri, L., Dolci, M., Capponi, A., & Aurino, G. (2000). Fusaric acid production by Fusarium oxysporum f.sp. lilii and its role in the lily basal rot disease. European Journal of Plant Pathology, 106(9), 849–856.CrossRefGoogle Scholar
  17. D’Alton, A., & Etherton, B. (1984). Effects of fusaric acid on tomato root hair membrane potentials and ATP levels. Plant Physiology, 74(1), 39–42.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Damanti, K. E., Gardner, J. M., & Scheffer, R. P. (1974). An assay for Helminthosporium victoriae toxin based on induced leakage of electrolytes from oat tissue. Phytopathology, 64, 652–654.CrossRefGoogle Scholar
  19. Dong, X., Ling, N., Wang, M., Shen, Q., & Guo, S. (2012). Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology and Biochemistry, 60, 171–179.PubMedCrossRefGoogle Scholar
  20. Fakhouri, W., Walker, F., Armbruster, W., & Buchenauer, H. (2003). Detoxification of fusaric acid by a nonpathogenic Colletotrichum sp. Physiological and Molecular Plant Pathology, 63(5), 263–269.CrossRefGoogle Scholar
  21. Gapillout, I., Milat, M. L., & Blein, J. P. (1996). Effects of fusaric acid on cells from tomato cultivars resistant or susceptible to Fusarium oxysporum f. sp. lycopersici. European Journal of Plant Pathology, 102(2), 127–132.CrossRefGoogle Scholar
  22. Gaumann, E. (1957). Fusaric acid as a wilt toxin. Phytopathology, 47, 342–357.Google Scholar
  23. Gonzalez, J., Reyes, F., Salas, C., Santiag, M., Codriansky, Y., Coliheuque, N., et al. (2006). Arabidopsis thaliana: a model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea. Biological Research, 39(2), 221–228.PubMedCrossRefGoogle Scholar
  24. Gutiérrez-Nájera, N., Muñoz-Clares, R. A., Palacios-Bahena, S., Ramírez, J., Sánchez-Nieto, S., Plasencia, J., et al. (2005). Fumonisin B1, a sphingoid toxin, is a potent inhibitor of the plasma membrane H+-ATPase. Planta, 221(4), 589–596.PubMedCrossRefGoogle Scholar
  25. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–32.Google Scholar
  26. Jaroszuk-Scisel, J., Kurek, E., Winiarczyk, K., Baturo, A., & Lukanowski, A. (2008). Colonization of root tissues and protection against Fusarium wilt of rye (Secale cereale) by nonpathogenic rhizosphere strains of Fusarium culmorum. Biological Control, 45(3), 297–307.CrossRefGoogle Scholar
  27. Krivanek, A. F., Stevenson, J. F., & Walker, M. A. (2005). Development and comparison of symptom indices for quantifying grapevine resistance to Pierce’s disease. Phytopathology, 95(1), 36–43.PubMedCrossRefGoogle Scholar
  28. Kuźniak, E. (2001). Effects of fusaric acid on reactive oxygen species and antioxidants in tomato cell cultures. Journal of Phytopathology, 149(10), 575–582.CrossRefGoogle Scholar
  29. Lakshminarayanan, K., & Subramanian, D. (1955). Is fusaric acid a vivotoxin? Nature, 176(4484), 697–698.CrossRefGoogle Scholar
  30. Lamour, K. H., & Hausbeck, M. K. (2001). Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Phytopathology, 91(10), 973–980.PubMedCrossRefGoogle Scholar
  31. Lee, H. J., Tucker, E. B., Crain, R. C., & Lee, Y. (1993). Stomatal opening is induced in epidermal peels of Commelina communis L. by GTP analogs or pertussis toxin. Plant Physiology, 102(1), 95–100.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Mace, M. E., Bell, A. A., & Beckman, C. H. (Eds.). (1981). Fungal wilt diseases of plants (Water Relations). New York: Academic Press. pp. 255–298.Google Scholar
  33. Marrè, M. T., Vergani, P., & Albergoni, F. G. (1993). Relationship between fusaric acid uptake and its binding to cell structures by leaves of Egeria densa and its toxic effects on membrane permeability and respiration. Physiological and Molecular Plant Pathology, 42(2), 141–157.CrossRefGoogle Scholar
  34. Mepsted, R., Flood, J., & Cooper, R. M. (1995). Fusarium wilt of oil palm II. Stunting as a mechanism to reduce water stress. Physiological and Molecular Plant Pathology, 46(5), 373–387.CrossRefGoogle Scholar
  35. Michelet, B., & Boutry, M. (1995). The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiology, 108(1), 1–6.PubMedCentralPubMedGoogle Scholar
  36. O’Connell, R., Herbert, C., Sreenivasaprasad, S., Khatib, M., Esquerre-Tugaye, M. T., & Dumas, B. (2004). A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Molecular Plant-microbe Interactions, 17(3), 272–282.PubMedCrossRefGoogle Scholar
  37. Owen, J. H. (1955). Fusarium wilt of cucumber. Phytopathology, 45, 435–439.Google Scholar
  38. Page, O. T. (1959). Fusaric acid in banana plants infected with Fusarium oxysporum f. cubense. Phytopathology, 49, 230.Google Scholar
  39. Palmgren, M. G., & Harper, J. F. (1999). Pumping with plant P-type ATPases. Journal of Experimental Botany, 50(1), 883–893.Google Scholar
  40. Pavlovkin, J., Mistrík, I., & Prokop, M. (2004). Some aspects of the phytotoxic action of fusaric acid on primary Ricinus roots. Plant, Soil and Environment, 50(9), 397–401.Google Scholar
  41. Pearce, R. B. (1990). Occurrence of decay-associated xylem suberization in a range of woody species. European Journal of Forest Pathology, 20(5), 275–289.CrossRefGoogle Scholar
  42. Pivonia, S., Cohen, R., Katan, J., & Kigel, J. (2002). Effect of fruit load on the water balance of melon plants infected with Monosporascus cannonballus. Physiological and Molecular Plant Pathology, 60(1), 39–49.CrossRefGoogle Scholar
  43. Pshibytko, N. L., Zenevich, L. A., & Kabashnikova, L. F. (2006). Changes in the photosynthetic apparatus during fusarium wilt of tomato. Russian Journal of Plant Physiology, 53(1), 25–31.CrossRefGoogle Scholar
  44. Rodriguez-Galvez, E., & Mendgen, K. (1995). Cell wall synthesis in cotton roots after infection with Fusarium oxysporum. The deposition of callose, arabinogalactans, xyloglucans, and pectic components into walls, wall appositions, cell plates and plasmodesmata. Planta, 197(3), 535–545.PubMedCrossRefGoogle Scholar
  45. Samadi, L., & Behboodi, B. S. (2006). Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. Planta, 255(1), 223–234.CrossRefGoogle Scholar
  46. Scheckler, S. E., & Galtier, J. (2003). Tyloses and ecophysiology of the early carboniferous progymnosperm tree Protopitys buchiana. Annals of Botany, 91(6), 739–747.PubMedCrossRefGoogle Scholar
  47. Serrano, R. (1989). Structure and function of plasma membrane ATPase. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 61–94.CrossRefGoogle Scholar
  48. Sherf, A. F., & MacNab, A. A. (1986). Vegetable diseases and their control (2nd ed., pp. 334–337). New York: Wiley.Google Scholar
  49. Simon-Plas, F., Gomes, E., Milat, M. L., Pugin, A., & Blein, J. P. (1996). Cercospora beticola Toxins (X. Inhibition of plasma membrane H+-ATPase by Beticolin-1). Plant Physiology, 111(3), 773–779.PubMedCentralPubMedGoogle Scholar
  50. Sussman, M. R., & Harper, J. F. (1989). Molecular biology of the plasma membrane of higher plants. Plant Cell, 1(10), 953–960.PubMedCentralPubMedGoogle Scholar
  51. Telles-Pupulin, A. R., Diniz, S., Bracht, A., & Ishii-Iwamoto, E. L. (1996). Effects of fusaric acid on respiration in maize root mitochondria. Biologia Plantarum, 38(3), 421–429.CrossRefGoogle Scholar
  52. Trillas, M. I., Cotxarrera, L., Casanova, E., & Cortadellas, N. (2000). Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiological and Molecular Plant Pathology, 56(3), 107–116.CrossRefGoogle Scholar
  53. Turner, N. C., & Graniti, A. (1969). Fusicoccin: a fungal toxin that opens stomata. Nature, 223(5210), 1070–1071.CrossRefGoogle Scholar
  54. Van Alfen, N. K., & Turner, N. C. (1975a). Changes in alfalfa stem conductance induced by Corynebacterium insidiosum Toxin. Plant Physiology, 55(3), 559–561.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Van Alfen, N. K., & Turner, N. C. (1975b). Influence of a Ceratocystis ulmi toxin on water relations of elm (Ulmus americana). Plant Physiology, 55(2), 312–316.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Venter, S., & Steyn, P. (1998). Correlation between fusaric acid production and virulence of isolates of Fusarium oxysporum that causes potato dry rot in South Africa. Potato Research, 41(3), 289–294.CrossRefGoogle Scholar
  57. Wu, H. S., Bao, W. i., Liu, D. Y., Ling, N., Ying, R. R., Raza, W., et al. (2008a). Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia, 61(3), 258–268.Google Scholar
  58. Wu, H. S., Yin, X. M., Liu, D. Y., Ling, N., Bao, W., Ying, R. R., et al. (2008b). Effect of fungal fusaric acid on the root and leaf physiology of watermelon (Citrullus lanatus) seedlings. Plant and Soil, 308(1), 255–266.CrossRefGoogle Scholar
  59. Zhu, Y. Y., Di, T. J., Xu, G. H., Chen, X. I., Zeng, H. Q., Yan, F., et al. (2009). Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell and Environment, 32(10), 1428–1440.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Min Wang
    • 1
  • Ning Ling
    • 1
  • Xian Dong
    • 1
  • Xiaokang Liu
    • 1
  • Qirong Shen
    • 1
  • Shiwei Guo
    • 1
  1. 1.Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations