Skip to main content
Log in

Effect of fusaric acid on the leaf physiology of cucumber seedlings

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The damaging effects of fusaric acid (FA), a fungal toxin produced by Fusarium oxysporum, on cucumber seedlings were investigated in a greenhouse experiment. The accumulation of red ink was introduced as damage determination, the vines and mesophyll cells of the plants treated with high concentration of FA were acutely stained to a deep red colour, and the quantity of red ink in the shoots and roots was significantly increased. The leaf plasma membrane H+-ATPase was significantly inhibited after treatment with FA. Moreover, transmission electron microscopy and electrolyte leakage experiments revealed severe FA-induced injury to leaf cell membranes. The membrane injury and wilt in the leaves of FA-treated plants disturbed the water status, and the leaf water potential was significantly decreased. The present results suggested that FA inhibits the leaf plasma membrane H+-ATPase and reduce the cell membrane integrity of cucumber seedlings, thus leading to leaf wilting and a reduction of the leaf water potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abouzeid, M. A., Abd-Elrahman, D. G., Hassan, A. A., Youssef, K. A., & Hammad, A. A. (2003). Use of gamma irradiation to control Fusarium verticillioides producing two known mycotoxins in infected corn. International Journal of Agriculture and Biology, 5(4), 397–404.

    CAS  Google Scholar 

  • Aguirreolea, J., Irigoyen, J., Sanchez-Diaz, M., & Salaverri, J. (1995). Physiological alterations in pepper during wilt induced by Phytophthora capsici and soil water deficit. Plant Pathology, 44(3), 587–596.

    Article  Google Scholar 

  • Arias, J. A. (1985). Secretory organelle and mitochondrial alterations induced by fusaric acid in root cells of Zea mays. Physiologial Plant Pathology, 27(2), 149–158.

    Article  CAS  Google Scholar 

  • Baayen, R. P. (1986). Regeneration of vascular tissues in relation to Fusarium wilt resistance of carnation. European Journal of Plant Pathology, 92(6), 273–285.

    Google Scholar 

  • Bacon, C. W., Porter, J. K., Norred, W. P., & Leslie, J. F. (1996). Production of fusaric acid by Fusarium species. Applied and Environmental Microbiology, 62(11), 4039–4043.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baginski, E. S., Foa, P. P., & Zak, B. (1967). Determination of phosphate: Study of labile organic phosphate interference. Clinica Chimica Acta, 15(1), 155–158.

    Article  CAS  Google Scholar 

  • Bao, J. R., & Lazarovits, G. (2001). Differential colonization of tomato roots by nonpathogenic and pathogenic Fusarium oxysporum strains may influence Fusarium wilt control. Phytopathology, 91(5), 449–456.

    Article  CAS  PubMed  Google Scholar 

  • Barna, B., & Györgyi, B. (1992). Resistance of young versus old tobacco leaves to necrotrophs, fusaric acid, cell wall-degrading enzymes and autolysis of membrane lipids. Physiological and Molecular Plant Pathology, 40(4), 247–257.

    Article  CAS  Google Scholar 

  • Batoko, H., de Kerchove d'Exaerde, A., Kinet, J. M., Bouharmont, J., Gage, R. A., Maraite, H., et al. (1998). Modulation of plant plasma membrane H+-ATPase by phytotoxic lipodepsipeptides produced by the plant pathogen Pseudomonas fuscovaginae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1372(2), 216–226.

    Google Scholar 

  • Beckman, C. H. (2000). Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological and Molecular Plant Pathology, 57(3), 101–110.

    Article  CAS  Google Scholar 

  • Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of heat tolerance in wheat. Crop Science, 21(1), 43–47.

    Article  Google Scholar 

  • Bouizgarne, B., Brault, M., Pennarun, A. M., Rona, J. P., Ouhdouch, Y., El Hadrami, I., et al. (2004). Electrophysiological responses to fusaric acid of root hairs from seedlings of date palm-susceptible and -resistant to Fusarium oxysporum f. sp. albedinis. Journal of Phytopathology, 152(6), 321–324.

    Article  CAS  Google Scholar 

  • Bouizgarne, B., El-Maarouf-Bouteau, H., Frankart, C., Reboutier, D., Madiona, K., Pennarun, A. M., et al. (2006a). Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytologist, 169(1), 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Bouizgarne, B., El-Maarouf-Bouteau, H., Madiona, K., Biligui, B., Monestiez, M., Pennarun, A. M., et al. (2006b). A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Molecular Plant-microbe Interactions, 19(5), 550–556.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Curir, P., Guglieri, L., Dolci, M., Capponi, A., & Aurino, G. (2000). Fusaric acid production by Fusarium oxysporum f.sp. lilii and its role in the lily basal rot disease. European Journal of Plant Pathology, 106(9), 849–856.

    Article  CAS  Google Scholar 

  • D’Alton, A., & Etherton, B. (1984). Effects of fusaric acid on tomato root hair membrane potentials and ATP levels. Plant Physiology, 74(1), 39–42.

    Article  PubMed Central  PubMed  Google Scholar 

  • Damanti, K. E., Gardner, J. M., & Scheffer, R. P. (1974). An assay for Helminthosporium victoriae toxin based on induced leakage of electrolytes from oat tissue. Phytopathology, 64, 652–654.

    Article  Google Scholar 

  • Dong, X., Ling, N., Wang, M., Shen, Q., & Guo, S. (2012). Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology and Biochemistry, 60, 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Fakhouri, W., Walker, F., Armbruster, W., & Buchenauer, H. (2003). Detoxification of fusaric acid by a nonpathogenic Colletotrichum sp. Physiological and Molecular Plant Pathology, 63(5), 263–269.

    Article  CAS  Google Scholar 

  • Gapillout, I., Milat, M. L., & Blein, J. P. (1996). Effects of fusaric acid on cells from tomato cultivars resistant or susceptible to Fusarium oxysporum f. sp. lycopersici. European Journal of Plant Pathology, 102(2), 127–132.

    Article  CAS  Google Scholar 

  • Gaumann, E. (1957). Fusaric acid as a wilt toxin. Phytopathology, 47, 342–357.

    Google Scholar 

  • Gonzalez, J., Reyes, F., Salas, C., Santiag, M., Codriansky, Y., Coliheuque, N., et al. (2006). Arabidopsis thaliana: a model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea. Biological Research, 39(2), 221–228.

    Article  PubMed  Google Scholar 

  • Gutiérrez-Nájera, N., Muñoz-Clares, R. A., Palacios-Bahena, S., Ramírez, J., Sánchez-Nieto, S., Plasencia, J., et al. (2005). Fumonisin B1, a sphingoid toxin, is a potent inhibitor of the plasma membrane H+-ATPase. Planta, 221(4), 589–596.

    Article  PubMed  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–32.

    Google Scholar 

  • Jaroszuk-Scisel, J., Kurek, E., Winiarczyk, K., Baturo, A., & Lukanowski, A. (2008). Colonization of root tissues and protection against Fusarium wilt of rye (Secale cereale) by nonpathogenic rhizosphere strains of Fusarium culmorum. Biological Control, 45(3), 297–307.

    Article  Google Scholar 

  • Krivanek, A. F., Stevenson, J. F., & Walker, M. A. (2005). Development and comparison of symptom indices for quantifying grapevine resistance to Pierce’s disease. Phytopathology, 95(1), 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Kuźniak, E. (2001). Effects of fusaric acid on reactive oxygen species and antioxidants in tomato cell cultures. Journal of Phytopathology, 149(10), 575–582.

    Article  Google Scholar 

  • Lakshminarayanan, K., & Subramanian, D. (1955). Is fusaric acid a vivotoxin? Nature, 176(4484), 697–698.

    Article  CAS  Google Scholar 

  • Lamour, K. H., & Hausbeck, M. K. (2001). Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Phytopathology, 91(10), 973–980.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. J., Tucker, E. B., Crain, R. C., & Lee, Y. (1993). Stomatal opening is induced in epidermal peels of Commelina communis L. by GTP analogs or pertussis toxin. Plant Physiology, 102(1), 95–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mace, M. E., Bell, A. A., & Beckman, C. H. (Eds.). (1981). Fungal wilt diseases of plants (Water Relations). New York: Academic Press. pp. 255–298.

  • Marrè, M. T., Vergani, P., & Albergoni, F. G. (1993). Relationship between fusaric acid uptake and its binding to cell structures by leaves of Egeria densa and its toxic effects on membrane permeability and respiration. Physiological and Molecular Plant Pathology, 42(2), 141–157.

    Article  Google Scholar 

  • Mepsted, R., Flood, J., & Cooper, R. M. (1995). Fusarium wilt of oil palm II. Stunting as a mechanism to reduce water stress. Physiological and Molecular Plant Pathology, 46(5), 373–387.

    Article  Google Scholar 

  • Michelet, B., & Boutry, M. (1995). The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiology, 108(1), 1–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connell, R., Herbert, C., Sreenivasaprasad, S., Khatib, M., Esquerre-Tugaye, M. T., & Dumas, B. (2004). A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Molecular Plant-microbe Interactions, 17(3), 272–282.

    Article  PubMed  Google Scholar 

  • Owen, J. H. (1955). Fusarium wilt of cucumber. Phytopathology, 45, 435–439.

    Google Scholar 

  • Page, O. T. (1959). Fusaric acid in banana plants infected with Fusarium oxysporum f. cubense. Phytopathology, 49, 230.

    CAS  Google Scholar 

  • Palmgren, M. G., & Harper, J. F. (1999). Pumping with plant P-type ATPases. Journal of Experimental Botany, 50(1), 883–893.

    CAS  Google Scholar 

  • Pavlovkin, J., Mistrík, I., & Prokop, M. (2004). Some aspects of the phytotoxic action of fusaric acid on primary Ricinus roots. Plant, Soil and Environment, 50(9), 397–401.

    CAS  Google Scholar 

  • Pearce, R. B. (1990). Occurrence of decay-associated xylem suberization in a range of woody species. European Journal of Forest Pathology, 20(5), 275–289.

    Article  Google Scholar 

  • Pivonia, S., Cohen, R., Katan, J., & Kigel, J. (2002). Effect of fruit load on the water balance of melon plants infected with Monosporascus cannonballus. Physiological and Molecular Plant Pathology, 60(1), 39–49.

    Article  Google Scholar 

  • Pshibytko, N. L., Zenevich, L. A., & Kabashnikova, L. F. (2006). Changes in the photosynthetic apparatus during fusarium wilt of tomato. Russian Journal of Plant Physiology, 53(1), 25–31.

    Article  CAS  Google Scholar 

  • Rodriguez-Galvez, E., & Mendgen, K. (1995). Cell wall synthesis in cotton roots after infection with Fusarium oxysporum. The deposition of callose, arabinogalactans, xyloglucans, and pectic components into walls, wall appositions, cell plates and plasmodesmata. Planta, 197(3), 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Samadi, L., & Behboodi, B. S. (2006). Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. Planta, 255(1), 223–234.

    Article  Google Scholar 

  • Scheckler, S. E., & Galtier, J. (2003). Tyloses and ecophysiology of the early carboniferous progymnosperm tree Protopitys buchiana. Annals of Botany, 91(6), 739–747.

    Article  PubMed  Google Scholar 

  • Serrano, R. (1989). Structure and function of plasma membrane ATPase. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 61–94.

    Article  CAS  Google Scholar 

  • Sherf, A. F., & MacNab, A. A. (1986). Vegetable diseases and their control (2nd ed., pp. 334–337). New York: Wiley.

    Google Scholar 

  • Simon-Plas, F., Gomes, E., Milat, M. L., Pugin, A., & Blein, J. P. (1996). Cercospora beticola Toxins (X. Inhibition of plasma membrane H+-ATPase by Beticolin-1). Plant Physiology, 111(3), 773–779.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sussman, M. R., & Harper, J. F. (1989). Molecular biology of the plasma membrane of higher plants. Plant Cell, 1(10), 953–960.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Telles-Pupulin, A. R., Diniz, S., Bracht, A., & Ishii-Iwamoto, E. L. (1996). Effects of fusaric acid on respiration in maize root mitochondria. Biologia Plantarum, 38(3), 421–429.

    Article  CAS  Google Scholar 

  • Trillas, M. I., Cotxarrera, L., Casanova, E., & Cortadellas, N. (2000). Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiological and Molecular Plant Pathology, 56(3), 107–116.

    Article  CAS  Google Scholar 

  • Turner, N. C., & Graniti, A. (1969). Fusicoccin: a fungal toxin that opens stomata. Nature, 223(5210), 1070–1071.

    Article  CAS  Google Scholar 

  • Van Alfen, N. K., & Turner, N. C. (1975a). Changes in alfalfa stem conductance induced by Corynebacterium insidiosum Toxin. Plant Physiology, 55(3), 559–561.

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Alfen, N. K., & Turner, N. C. (1975b). Influence of a Ceratocystis ulmi toxin on water relations of elm (Ulmus americana). Plant Physiology, 55(2), 312–316.

    Article  PubMed Central  PubMed  Google Scholar 

  • Venter, S., & Steyn, P. (1998). Correlation between fusaric acid production and virulence of isolates of Fusarium oxysporum that causes potato dry rot in South Africa. Potato Research, 41(3), 289–294.

    Article  CAS  Google Scholar 

  • Wu, H. S., Bao, W. i., Liu, D. Y., Ling, N., Ying, R. R., Raza, W., et al. (2008a). Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia, 61(3), 258–268.

    CAS  Google Scholar 

  • Wu, H. S., Yin, X. M., Liu, D. Y., Ling, N., Bao, W., Ying, R. R., et al. (2008b). Effect of fungal fusaric acid on the root and leaf physiology of watermelon (Citrullus lanatus) seedlings. Plant and Soil, 308(1), 255–266.

    Article  CAS  Google Scholar 

  • Zhu, Y. Y., Di, T. J., Xu, G. H., Chen, X. I., Zeng, H. Q., Yan, F., et al. (2009). Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell and Environment, 32(10), 1428–1440.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31172020 and 41071160). We thank Prof. Dr. Z. Zhong, Nanjing Agricultural University, China, for helpful discussion and critical comments of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Ling, N., Dong, X. et al. Effect of fusaric acid on the leaf physiology of cucumber seedlings. Eur J Plant Pathol 138, 103–112 (2014). https://doi.org/10.1007/s10658-013-0306-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0306-4

Keywords

Navigation