European Journal of Plant Pathology

, Volume 136, Issue 4, pp 789–802 | Cite as

Interaction of Collimonas strain IS343 with Rhizoctonia solani at low carbon availability in vitro and in soil

  • Ilya V. Senechkin
  • Leonard S. van Overbeek
  • Hong Ling Er
  • Oscar de Vos
  • Ariena H. C. van Bruggen


Collimonas sp. IS343, isolated from an organically-farmed arable soil and characterized as a broad-range oligotrophic bacterium, was shown to degrade chitin and to suppress R. solani mycelium growth under in vitro conditions at high and low carbon availabilities. In contrast to C. fungivorans Ter331, strain IS343 did not respond with an increase in growth rate to higher carbon levels in liquid medium, it reached higher cell numbers in carbon-poor media and it showed better survival in bulk soil. Therefore, it was concluded that strain IS343 cells are better adapted to circumstances of low carbon availability as present in bulk soils than strain Ter331 cells. Further, strain IS343 cells were more suppressive towards R. solani than strain Ter331 cells in vitro. When introduced into soil, strain IS343 cells delayed disease development caused by R. solani AG2-2IIIB in sugar beet plants. These results suggest that strain IS343 cells are able to tentatively suppress R. solani AG2-2IIIB mycelium growth in soil. Potential mechanisms behind the observed suppressive effects can be competition for available nutrients between strain IS343 cells and R. solani mycelium in soil or the production of chitinase as shown for this and other Collimonas species.


Collimonas Rhizoctonia solani Oligotrophy Disease suppression Soil 



This research was part of the Ecogenomics program which was sponsored by the Dutch National Genomics Initiative and the basic research program on sustainable agriculture (KB4) funded by the Dutch Ministry of Agriculture, Nature and Food Safety. We would like to thank Pieter Kastelein for his assistance with the plant-soil microcosm experiments.


  1. Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: John Wiley & Sons. 532 pp.Google Scholar
  2. De Boer, W., Klein Gunnewiek, P. J. A., Lafeber, P., Janse, J. D., Spit, B. E., & Woldendorp, J. W. (1998). Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biology and Biochemistry, 30, 193–203.CrossRefGoogle Scholar
  3. De Boer, W., Klein Gunnewiek, P. J. A., Kowalchuk, G. A., & Van Veen, J. A. (2001). Growth of chitinolytic dune soil β-subclass proteobacteria in response to invading fungal hyphae. Applied and Environmental Microbiology, 67, 3358–3362.PubMedCrossRefGoogle Scholar
  4. De Boer, W., Leveau, J. H. J., Kowalchuk, G. A., Klein Gunnewiek, P. J. A., Abeln, E. C. A., Figge, M. J., et al. (2004). Collimonas fungivorans gen. nov. sp. nov. a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. International Journal of Systematic and Evolutionary Microbiology, 54, 857–864.PubMedCrossRefGoogle Scholar
  5. Demoling, F., Figueroa, D., & Baath, E. (2007). Comparison of factors limiting bacterial growth in different soils. Soil Biology and Biochemistry, 39, 2485–2495.CrossRefGoogle Scholar
  6. Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.PubMedCrossRefGoogle Scholar
  7. Grünwald, N. J., Hu, S., & Van Bruggen, A. H. C. (2000). Short-term cover crop decomposition in organic and conventional soils; Characterization of soil C, N, microbial and plant pathogen dynamics. European Journal of Plant Pathology, 106, 37–50.CrossRefGoogle Scholar
  8. He, M., Ma, W., Tian, G., Blok, W., Khodzaeva, A., Zelenev, V. V., et al. (2010). Daily changes of infections by Pythium ultimum after a nutrient impulse in organic versus conventional soils. Phytopathology, 100, 593–600.PubMedCrossRefGoogle Scholar
  9. He, M., Tian, G., Semenov, A. M., & Van Bruggen, A. H. C. (2012). Short-term fluctuations of sugar-beet damping-off by Pythium ultimum in relation to changes in bacterial communities after organic amendments to two soils. Phytopathology, 102, 413–420.PubMedCrossRefGoogle Scholar
  10. Hiddink, G. A., van Bruggen, A. H. C., Termorshuizen, A. J., Raaijmakers, J. M., & Semenov, A. V. (2005). Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. European Journal of Plant Pathology, 113, 417–435.CrossRefGoogle Scholar
  11. Höppener-Ogawa, S., Leveau, J. H. J., Smant, W., Van Veen, J. A., & De Boer, W. (2007). Specific detection and real-time PCR quantification of potentially mycophagous bacteria belonging to the genus Collimonas in different soil ecosystems. Applied and Environmental Microbiology, 73, 4191–4197.PubMedCrossRefGoogle Scholar
  12. Höppener-Ogawa, S., De Boer, W., Leveau, J. H. J., Van Veen, J. A., De Brandt, E., Vanlaere, E., et al. (2008). Collimonas arenae sp. nov. and Collimonas pratensis sp. nov. isolated from (semi-)natural grassland soils. International Journal of Systematic and Evolutionary Microbiology, 58, 414–419.PubMedCrossRefGoogle Scholar
  13. Höppener-Ogawa, S., Leveau, J. H. J., Van Veen, J. A., & De Boer, W. (2009). Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi. ISME Journal, 3, 190–198.PubMedCrossRefGoogle Scholar
  14. Hu, S., van Bruggen, A. H. C., Wakeman, R. J., & Grunwald, N. J. (1997). Microbial suppression of in vitro growth of Pythium ultimum and disease incidence in relation to soil C and N availability. Plant and Soil, 195, 43–52.CrossRefGoogle Scholar
  15. Hu, S. J., Van Bruggen, A. H. C., & Grünwald, N. J. (1999). Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Applied Soil Ecology, 13, 21–30.CrossRefGoogle Scholar
  16. Ikeda, S., Omura, T., Ytow, N., Komaki, H., Minamisawa, K., Ezura, H., et al. (2006). Microbial community analysis in the rhizosphere of a transgenic tomato that overexpresses 3-hydroxy-3-methylglutaryl Coenzyme A Reductase. Microbes and Environments, 21, 261–271.CrossRefGoogle Scholar
  17. Ingram, C., & Westpheling, J. (1995). The glucose kinase gene of Streptomyces coelicolor is not required for glucose repression of the chi63 promoter. Journal of Bacteriology, 177, 3587–3588.PubMedGoogle Scholar
  18. Kamilova, F., Leveau, J. H. J., & Lugtenberg, B. (2007). Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environmental Microbiology, 9, 1597–1603.PubMedCrossRefGoogle Scholar
  19. Kuznetsov, S. I., Dubinina, G. A., & Lapteva, N. A. (1979). Biology of oligotrophic bacteria. Annual Review of Microbiology, 33, 377–387.PubMedCrossRefGoogle Scholar
  20. Lavrent’eva, E. V., Semenov, A. M., Zelenev, V. V., Chzhun, Y., Semenova, E. V., Semenov, V. M., et al. (2009). Daily dynamics of cellulase activity in arable soils depending on management practices. Eurasian Soil Science, 42, 885–893.CrossRefGoogle Scholar
  21. Leveau, J. H. J., Uroz, S., & De Boer, W. (2009). The bacterial genus Collimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil conditions. Environmental Microbiology, 12, 281–292.PubMedCrossRefGoogle Scholar
  22. Männistö, M. K., & Häggblom, M. M. (2006). Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Systematic and Applied Microbiology, 29, 229–243.PubMedCrossRefGoogle Scholar
  23. Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3, 371–394.CrossRefGoogle Scholar
  24. Offre, P., Pivato, B., Siblot, S., Gamalero, E., Corberand, T., Lemanceau, P., et al. (2007). Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Applied and Environmental Microbiology, 73, 913–921.PubMedCrossRefGoogle Scholar
  25. Opelt, K., & Berg, G. (2004). Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea coast. Applied and Environmental Microbiology, 70, 6569–6579.PubMedCrossRefGoogle Scholar
  26. Postma, J., Schilder, M. T., Bloem, J., & Van Leeuwen-Haagsma, W. K. (2008). Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biology and Biochemistry, 40, 2394–2406.CrossRefGoogle Scholar
  27. Postma, J., Nijhuis, E. H. M., & Yassin, A. F. (2010). Genotypic and phenotypic variation among Lysobacter capsici strains isolated from Rhizoctonia suppressive soils. Systematic and Applied Microbiology, 33, 232–235.PubMedCrossRefGoogle Scholar
  28. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 7188–7196.PubMedCrossRefGoogle Scholar
  29. Rademaker, J. L. W., Louws, F. J., & De Bruijn, F. J. (1997). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In A. D. L. Akkermans, J. D. Van Elsas, & J. D. de Bruijn (Eds.), Molecular microbial ecology manual (pp. 1–26). Dordrecht: Kluwer Academic Publishers. Supplement 3, chapter 3.4.3.Google Scholar
  30. Schmidt, M., Priemé, A., & Stougaard, P. (2006). Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles, 10, 551–562.PubMedCrossRefGoogle Scholar
  31. Semenov, A. M. (1991). Physiological bases of oligotrophy of microorganisms and the concept of microbial community. Microbial Ecology, 22, 239–247.CrossRefGoogle Scholar
  32. Semenov, A. M., Van Bruggen, A. H. C., & Zelenev, V. V. (1999). Moving waves of bacterial populations and total organic carbon along roots of wheat. Microbial Ecology, 37, 116–128.PubMedCrossRefGoogle Scholar
  33. Semenov, A. V., Franz, E., Van Overbeek, L., Termorshuizen, A. J., & Van Bruggen, A. H. C. (2008). Estimating the stability of Escherichia coli O157:H7 survival in manure amended soils with different management histories. Environmental Microbiology, 10, 1450–1459.PubMedCrossRefGoogle Scholar
  34. Semenov, A. V., Van Overbeek, L., & Van Bruggen, A. H. C. (2009). Percolation and survival of E. coli O157H7 and Salmonella enterica serovar Typhimurium in soil amended with contaminated dairy manure or slurry. Applied and Environmental Microbiology, 75, 3206–3215.PubMedCrossRefGoogle Scholar
  35. Senechkin, I. V., Speksnijder, A. G. C. L., Semenov, A. M., Van Bruggen, A. H. C., & Van Overbeek, L. S. (2010). Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments. Microbial Ecology, 60, 829–839.PubMedCrossRefGoogle Scholar
  36. Uroz, S., Calvaruso, C., Turpault, M. P., Pierrat, J. C., Mustin, C., & Frey-Klett, P. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73, 3019–3027.PubMedCrossRefGoogle Scholar
  37. Uroz, S., Calvaruso, C., Turpault, M.-P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17, 378–387.PubMedCrossRefGoogle Scholar
  38. Van Bruggen, A. H. C., & Semenov, A. M. (1999). A new approach to the search for indicators of root disease suppression. Australasian Plant Pathology, 28, 4–10.CrossRefGoogle Scholar
  39. Van Bruggen, A. H. C., & Termorshuizen, A. J. (2003). Integrated approaches to root disease management in organic farming systems. Australasian Plant Pathology, 32, 141–156.CrossRefGoogle Scholar
  40. Van Bruggen, A. H. C., Semenov, A. M., & Zelenev, V. V. (2000). Wave-like distributions of microbial populations along an artificial root moving through soil. Microbial Ecology, 40, 250–259.PubMedGoogle Scholar
  41. Van Bruggen, A. H. C., Semenov, A. M., & Zelenev, V. V. (2002). Wave-like distributions of infections by an introduced and naturally occurring root pathogen along wheat roots. Microbial Ecology, 44, 30–38.PubMedCrossRefGoogle Scholar
  42. Van Bruggen, A. H. C., Semenov, A. M., Van Diepeningen, A. D., De Vos, O. J., & Blok, W. J. (2006). Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. European Journal of Plant Pathology, 115, 105–122.CrossRefGoogle Scholar
  43. Van Diepeningen, A. D., de Vos, O. J., Zelenev, V. V., Semenov, A. M., & Van Bruggen, A. H. C. (2005). DGGE fragments oscillate with or counter to fluctuations of cultivable bacteria along wheat roots. Microbial Ecology, 50, 506–517.PubMedCrossRefGoogle Scholar
  44. Van Diepeningen, A. D., De Vos, O. J., Korthals, G. W., & Van Bruggen, A. H. C. (2006). Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Applied Soil Ecology, 31, 120–135.CrossRefGoogle Scholar
  45. Van Elsas, J. D., & Van Overbeek, L. S. (1993). Bacterial responses to soil stimuli. In S. Kjelleberg (Ed.), Starvation in bacteria. New York: Plenum Press.Google Scholar
  46. Van Elsas, J. D., Trevors, J. T., & Wellington, E. M. H. (1997). Modern soil microbiology. New York: Marcel Dekker Inc.Google Scholar
  47. Van Overbeek, L. S., Eberl, L., Givskov, M., Molin, S., & Van Elsas, J. D. (1994). Induced stress resistance in Pseudomonas fluorescens residing in soil. Applied and Environmental Microbiology, 61, 4202–4208.Google Scholar
  48. Van Overbeek, L. S., Senechkin, I. V., & Van Bruggen, A. H. C. (2012). Variation in microbial responses and Rhizoctonia solani AG2-2IIIB growth in soil under different organic amendment regimes. Canadian Journal of Plant Pathology, 34, 268–276.CrossRefGoogle Scholar
  49. Van Veen, J. A., Van Overbeek, L. S., & Van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121–135.PubMedGoogle Scholar
  50. Whang, K., & Hattori, T. (1988). Oligotrophic bacteria from rendzina forest soil. Antonie Van Leeuwenhoek, 54, 19–36.PubMedCrossRefGoogle Scholar
  51. Zelenev, V. V., Van Bruggen, A. H. C., & Semenov, A. M. (2000). “BACWAVE”, a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil. Microbial Ecology, 40, 260–272.PubMedGoogle Scholar
  52. Zelenev, V. V., Van Bruggen, A. H. C., & Semenov, A. M. (2005a). Short-term wave-like dynamics of bacterial populations in response to nutrient input from fresh plant residues. Microbial Ecology, 49, 83–93.PubMedCrossRefGoogle Scholar
  53. Zelenev, V. V., Van Bruggen, A. H. C., & Semenov, A. M. (2005b). Modeling wave-like dynamics of oligotrophic and copiotrophic bacteria along wheat roots in response to nutrient input from a growing root tip. Ecological Modelling, 188, 404–417.CrossRefGoogle Scholar
  54. Zelenev, V. V., Van Bruggen, A. H. C., Leffelaar, P. A., Bloem, J., & Semenov, A. M. (2006). Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model ‘BACWAVE-WEB’. Soil Biology and Biochemistry, 38, 1690–1711.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Ilya V. Senechkin
    • 1
  • Leonard S. van Overbeek
    • 1
  • Hong Ling Er
    • 2
  • Oscar de Vos
    • 3
  • Ariena H. C. van Bruggen
    • 2
  1. 1.Plant Research International BVWageningen University and Research CentreWageningenThe Netherlands
  2. 2.Emerging Pathogens Institute and Plant Pathology DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.Farming Systems Ecology Group, Department of Plant SciencesWageningen University and Research CenterWageningenThe Netherlands

Personalised recommendations