Advertisement

European Journal of Plant Pathology

, Volume 136, Issue 4, pp 689–701 | Cite as

Detection of Pythium aphanidermatum in tomato using loop-mediated isothermal amplification (LAMP) with species-specific primers

  • Shiro Fukuta
  • Reiko Takahashi
  • Satoru Kuroyanagi
  • Noriyuki Miyake
  • Hirofumi Nagai
  • Hirofumi Suzuki
  • Fujio Hashizume
  • Tomoko Tsuji
  • Hiromi Taguchi
  • Hideki Watanabe
  • Koji Kageyama
Article

Abstract

A loop-mediated isothermal amplification (LAMP) reaction with a primer set designed from the rDNA ITS sequence of P. aphanidermatum was developed. Results of a specificity test using 57 strains of Pythium spp. indicated that the LAMP assay gave no cross reactions in other 39 Pythium species, 11 strains of Phytophthora spp. and eight other soil borne pathogens. The detection limit was 10 fg of genomic DNA, which was ten times the sensitivity of the polymerase chain reaction. The LAMP assay was applied to hydroponic solution samples from tomato fields, and the results were compared to those of the conventional plating method. LAMP was observed to be effective for the specific detection of P. aphanidermatum. Furthermore, P. aphanidermatum was detected directly in tomato roots infected with P. aphanidermatum without DNA extraction. The LAMP method established in this study is a simple, sensitive and rapid tool for the detection of P. aphanidermatum.

Keywords

Pythium aphanidermatum Detection Loop-mediated isothermal amplification (LAMP) Tomato 

Notes

Acknowledgments

We are grateful to M. Suzuki, S. Uematsu, Y. Kajitani, Y. Chikuo and M. D. Coffey for providing Pythium spp. isolates.

This work was supported by Research and development projects for application in promoting new policy of agriculture, forestry and fisheries, Ministry of Agriculture, Forestry and Fisheries, Japan.

References

  1. Asano, T., Senda, M., Suga, H., & Kageyama, K. (2010). Development of multiplex PCR to detect five Pythium species related to turfgrass diseases. Journal of Phytopathology, 158, 609–615.Google Scholar
  2. Blair, J. E., Coffey, M. D., Park, S. Y., Geister, D. M., & Kang, S. (2008). A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genetics and Biology, 45, 266–277.PubMedCrossRefGoogle Scholar
  3. Botton, S. A., Pereira, D. I. B., Costa, M. M., Azevedo, M. I., Argenta, J. S., Jesus, F. P. K., et al. (2011). Identification of Pythium insidiosum by nested PCR in cutaneous lesions of Brazilian horses and rabbits. Current Microbiology, 62, 1225–1229.PubMedCrossRefGoogle Scholar
  4. Boubourakas, I. N., Fukuta, S., & Kyriakopoulou, P. E. (2009). Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. Journal of Virological Methods, 160, 63–68.PubMedCrossRefGoogle Scholar
  5. Fukuta, S., Kato, S., Yoshida, K., Mizukami, Y., Ishida, A., Ueda, J., et al. (2003). Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. Journal of Virological Methods, 112, 35–40.PubMedCrossRefGoogle Scholar
  6. Fukuta, S., Ohishi, K., Yoshida, K., Mizukami, Y., Ishida, A., & Kanbe, M. (2004). Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. Journal of Virological Methods, 121, 49–55.PubMedCrossRefGoogle Scholar
  7. Fukuta, S., Tsuji, T., Ikeda, T. M., Yoshida, T., & Fujii, K. (2010). Development of loop-mediated isothermal amplification (LAMP) markers for GluB3, GluA3 and GluA1 of hexaploid wheat. Breeding Research, 12, 87–95.CrossRefGoogle Scholar
  8. Hendrix, F. F., & Campbell, W. A. (1973). Pythiums as plant pathogens. Annual Review of Phytopathology, 11, 77–98.CrossRefGoogle Scholar
  9. Kageyama, K. (1997). Detection of Pythium ultimum using polymerase chain reaction with species-specific primers. Plant Disease, 81, 1155–1160.CrossRefGoogle Scholar
  10. Kageyama, K., Suzuki, M., Priyatmojo, A., Oto, Y., Ishiguro, K., Suga, H., et al. (2003). Characterization and identification of asexual strains of Pythium associated with root rot of rose in Japan. Journal of Phytopathology, 151, 485–491.CrossRefGoogle Scholar
  11. Kageyama, K., Nakashima, A., Kajihara, Y., Suga, H., & Nelson, E. B. (2005). Phylogenetic and morphological analyses of Pythium graminicola and related species. Journal of General Plant Pathology, 71, 174–182.CrossRefGoogle Scholar
  12. Kaneko, H., Kawana, T., Fukushima, E., & Suzutani, T. (2007). Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70, 499–501.PubMedCrossRefGoogle Scholar
  13. Le Floch, G., Tambong, J., Vallance, J., Tirilly, Y., Lévesque, A., & Rey, P. (2007). Rhizosphere persistence of three Pythium oligandrum strains in tomato soilless culture assessed by DNA macroarray and real-time PCR. FEMS Microbioloy Ecology, 61, 317–326.CrossRefGoogle Scholar
  14. Lévesque, C. A., & de Cock, A. W. (2004). Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research, 108, 1363–1383.PubMedCrossRefGoogle Scholar
  15. Li, M., Asano, T., Suga, H., & Kageyama, K. (2011). A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Disease, 95, 1270–1278.CrossRefGoogle Scholar
  16. Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289, 150–154.PubMedCrossRefGoogle Scholar
  17. Mori, Y., Kitao, M., Tomita, N., & Notomi, T. (2004). Real-time turbidimetry of LAMP reaction for quantifying template DNA. Journal of Biochemical and Biophysical Methods, 59, 145–157.PubMedCrossRefGoogle Scholar
  18. Morita, Y., & Tojo, M. (2007). Modifications of PARP medium using fluazinam, miconazole, and nystatin for detection of Pythium spp. in soil. Plant Disease, 91, 1591–1599.CrossRefGoogle Scholar
  19. Nagamine, K., Hase, T., & Notomi, T. (2002). Acccelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16, 223–229.PubMedCrossRefGoogle Scholar
  20. Niu, J. H., Jian, H., Guo, Q. X., Chen, C. L., Wang, X. Y., Liu, Q., et al. (2012). Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology, 61, 809–819.CrossRefGoogle Scholar
  21. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, e63.PubMedCrossRefGoogle Scholar
  22. Parida, M., Sannarangaiah, S., Dash, P. K., Rao, P. V. L., & Morita, K. (2008). Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Reviews in Medical Virology, 18, 407–421.PubMedCrossRefGoogle Scholar
  23. Postma, J., Geraats, B. P. J., Pastoor, R., & van Elsas, J. D. (2005). Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology, 95, 808–818.PubMedCrossRefGoogle Scholar
  24. Rigano, L. A., Marano, M. R., Castagnaro, A. P., Amaral, A. M. D., & Vojnov, A. A. (2010). Rapid and sensitive detection of citrus bacterial canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiology, 10, 176.PubMedCrossRefGoogle Scholar
  25. Schroeder, K. L., Okubara, P. A., Tambong, J. T., Lévesque, C. A., & Paulitz, T. C. (2006). Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology, 96, 637–647.PubMedCrossRefGoogle Scholar
  26. Sung, C.-H., & Lu, J.-K. (2009). Reverse transcription loop-mediated isothermal amplification for rapid and sensitive detection of nervous necrosis virus in groupers. Journal of Virological Methods, 159, 206–210.PubMedCrossRefGoogle Scholar
  27. Tomlinson, J. A., Boonham, N., Hughes, K. J. D., Griffin, R. L., & Barker, I. (2005). On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 71, 6702–6710.PubMedCrossRefGoogle Scholar
  28. Tomlinson, J. A., Barker, I., & Boonham, N. (2007). Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 73, 4040–4047.PubMedCrossRefGoogle Scholar
  29. Tomlinson, J. A., Dickinson, M. J., & Boonham, N. (2010a). Detection of Botrytis cinerea by loop-mediated isothermal amplification. Letters in Applied Microbiology, 51, 650–657.PubMedCrossRefGoogle Scholar
  30. Tomlinson, J. A., Dickinson, M. J., & Boonham, N. (2010b). Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology, 100, 143–149.PubMedCrossRefGoogle Scholar
  31. Villa, N. O., Kageyama, K., Asano, T., & Suga, H. (2006). Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and β-tubulin gene sequences. Mycologia, 98, 410–422.PubMedCrossRefGoogle Scholar
  32. Wang, P. H., Wang, Y. T., & White, J. G. (2003). Species-specific PCR primers for Pythium developed from ribosomal ITS1 region. Letters in Applied Microbiology, 37, 127–132.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Shiro Fukuta
    • 1
    • 6
  • Reiko Takahashi
    • 1
  • Satoru Kuroyanagi
    • 1
  • Noriyuki Miyake
    • 1
  • Hirofumi Nagai
    • 1
  • Hirofumi Suzuki
    • 2
  • Fujio Hashizume
    • 3
  • Tomoko Tsuji
    • 2
  • Hiromi Taguchi
    • 2
  • Hideki Watanabe
    • 4
  • Koji Kageyama
    • 5
  1. 1.Agri-environmental DivisionAichi Agricultural Research CenterNagakuteJapan
  2. 2.Division of Regenerative TechnologyMie Prefecture Agricultural Research CenterMatsusakaJapan
  3. 3.Division of BiotechnologyMie Prefecture Agricultural Research CenterMatsusakaJapan
  4. 4.Environmental DivisionGifu Prefectural Agricultural Technology CenterGifuJapan
  5. 5.River Basin Research CenterGifu UniversityGifuJapan
  6. 6.Agri-environmental DivisionAichi Agricultural Research CenterNagakuteJapan

Personalised recommendations