Advertisement

European Journal of Plant Pathology

, Volume 136, Issue 3, pp 603–611 | Cite as

Development and validation of a standard area diagram set to assess blast severity on wheat leaves

  • Jonas Alberto Rios
  • Daniel Debona
  • Henrique Silva Silveira Duarte
  • Fabrício Avila Rodrigues
Article

Abstract

This study aimed to develop and validate a standard area diagram set (SADS) to quantify the severity of blast, caused by Pyricularia oryzae, on wheat leaves. The SADs has ten levels: 0.1, 1, 5, 10, 22, 32, 42, 52, 62 and 72 % blast severity. To validate the SADs, 12 inexperienced raters estimated disease severity on 50 images of leaves from cultivars BR-18 (susceptible) and BRS-229 (partially resistant). Blast severity was first estimated without the use of the SADs on 50 leaves with a range of blast severity. The same raters evaluated the same 50 leaves using the SADs as an aid. The SADs improved accuracy (coefficient of bias, C b  = 0.88 and 0.99, without and with SADs, respectively) and agreement (Lin’s concordance correlation coefficient, ρ c  = 0.84 and 0.96 without and with SADs, respectively) of the estimates of severity. The absolute error was (-) 52 % without the SADs and (-) 24 % when using SADs as an aid. Severity estimates were more reliable when using SADs (R2 = 0.87 unaided and R2 = 0.92 with SAD). The SADs proposed in this study will improve accuracy and reliability of estimates of blast severity on wheat leaves.

Keywords

Epidemiology Disease assessment Pyricularia oryzae Triticum aestivum 

Notes

Acknowledgments

F.A. Rodrigues thank the National Counsel of Technological and Scientific Development (CNPq) for his fellowship. Mrs. Jonas A. Rios, D. Debona, and H. S. S. Duarte were supported by CNPq. We are grateful to Dr. C. H. Bock for his help with the statistical analysis. This study was supported by grants from CAPES, CNPq and FAPEMIG to Prof. F. A. Rodrigues.

References

  1. Aquino, L. A., Berger, P. G., Rodrigues, F. A., Zambolim, L., Hernandez, J. F. R., & Miranda, L. M. (2008). Elaboração e validação de escala diagramática para quantificação da ramulária do algodoeiro. Summa Phytopathologica, 34, 361–363.CrossRefGoogle Scholar
  2. Bardsley, S. J., & Ngugi, H. K. (2012). Reliability and accuracy of visual methods used to quantify severity of foliar bacterial spot symptoms on peach and nectarine. Plant Pathology, 61. doi: 10.1111/j.1365-3059.2012.02651.x.
  3. Belasque, J., Bassanezi, R. B., Spósito, M. B., Ribeiro, L. M., Jesus Júnior, W. C., & Amorim, L. (2005). Escalas diagramáticas para a avaliação da severidade do cancro cítrico. Fitopatologia Brasileira, 30, 387–393.CrossRefGoogle Scholar
  4. Bergamim Filho, A., & Amorim, L. (1996). Doenças de plantas tropicais: Epidemiologia e controle econômico. São Paulo: Ceres.Google Scholar
  5. Berger, R. D. (1980). Measuring disease intensity. In P. S. Teng & S. V. Krupa (Eds.), Crop loss assessment wich constrain production and crop improvement in agriculture and forestry (pp. 28–31). Saint Paul: University of Minnesota.Google Scholar
  6. Bock, C. H., Poole, G., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29, 59–107.CrossRefGoogle Scholar
  7. Capucho, A. S., Zambolim, L., Duarte, H. S. S., Parreira, D. F., Ferreira, P. A., Lanza, F. E., et al. (2010). Influence of leaf position that correspond to whole plant severity and diagrammatic scale for white spot of corn. Crop Protection, 29, 1015–1020.CrossRefGoogle Scholar
  8. Capucho, A. S., Zambolim, L., Duarte, H. S. S., & Vaz, G. R. O. (2011). Development and validation of a standard area diagram set to estimate severity of leaf rust in Coffea arabica and C. canephora. Plant Pathology, 60, 1144–1150.CrossRefGoogle Scholar
  9. Correa, F. M., Bueno Filho, J. S. S., & Carmo, M. G. F. (2009). Comparison of three diagrammatic keys for the quantification of late blight in tomato leaves. Plant Pathology, 58, 1128–1133.CrossRefGoogle Scholar
  10. Diaz, C. G., Bassanezi, R. B., & Bergamin Filho, A. (2001). Desenvolvimento e validação de uma escala diagramática para Xanthomonas axonopodis pv. phaseoli em feijoeiro. Summa Phytopathologica, 27, 35–39.Google Scholar
  11. Filha, M. S. F., Rodrigues, F. A., Domiciano, G. P., Oliveira, H. V., Silveira, P. R., & Moreira, W. R. (2011). Wheat resistance to leaf blast mediated by silicon. Australasian Plant Pathology, 40, 28–38.CrossRefGoogle Scholar
  12. Godoy, C. V., Koga, L. J., & Canteri, M. G. (2006). Diagramatic scale for assessment of soybean rust severity. Fitopatologia Brasileira, 31, 63–68.CrossRefGoogle Scholar
  13. Gomes, A. M. A., Michereff, S. J., & Mariano, R. L. R. (2004). Elaboração e validação de escala diagramática para cercosporiose da alface. Summa Phytopathologica, 30, 38–42.Google Scholar
  14. Goulart, A. C. P., Sousa, P. G., & Urashima, A. S. (2007). Danos em trigo causados pela infecção de Pyricularia grisea. Summa Phytopathologica, 33, 358–363.CrossRefGoogle Scholar
  15. Horsfall, J. G., & Barrat, R. W. (1945). An improved grading system for measuring plant disease. Phytopathology, 35, 655.Google Scholar
  16. Igarashi, S., Utiamada, C. M., Igarashi, L. C., Kazuma, A. H., & Lopes, R. S. (1986). Pyricularia sp. em trigo. In Ocorrência de Pyricularia sp. no estado do Paraná. Fitopatologia Brasileira, 11, 351–352.Google Scholar
  17. Lenz, A., Balardin, R. S., Corte, G. D., Marques, L. N., & Debona, D. (2010). Escala diagramática para a avaliação de severidade de mancha-parda em arroz. Ciência Rural, 40, 752–758.CrossRefGoogle Scholar
  18. Lin, L. I. K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268.PubMedCrossRefGoogle Scholar
  19. Madden, L. V., Hughes, G., & Van den Bosch, F. (2007). The study of plant disease epidemics. St Paul: APS Press.Google Scholar
  20. Martins, M. C., Guerzoni, R. A., Câmara, G. M. S., Mattiazzi, P., Lourenço, S. A., & Amorim, L. (2004). Escala diagramática para a quantificação do complexo de doenças foliares de final de ciclo em soja. Fitopatologia Brasileira, 29, 179–184.CrossRefGoogle Scholar
  21. Michereff, S. J., Maffia, L. A., & Noronha, M. A. (2000). Escala diagramática para avaliação da severidade da queima das folhas do inhame. Fitopatologia Brasileira, 25, 612–629.Google Scholar
  22. Newton, A. C., & Hackett, C. A. (1994). Subjective components of mildew assessment on spring barley. European Journal of Plant Pathology, 100, 395–412.CrossRefGoogle Scholar
  23. Nita, M., Ellis, M. A., & Madden, L. V. (2003). Reliability and accuracy of visual estimation of phomopsis leaf blight of strawberry. Phytopathology, 93, 995–1005.PubMedCrossRefGoogle Scholar
  24. Nutter, F. W., Jr., & Schultz, P. M. (1995). Improving the accuracy and precision of disease assessments: selection of methods and use of computer-aided training programs. Canadian Journal of Plant Pathology, 17, 174–184.CrossRefGoogle Scholar
  25. Nutter, F. W., Teng, P. S., & Shokes, F. M. (1991). Disease assessment term and concepts. Plant Disease, 75, 1187–1188.Google Scholar
  26. Nutter, F. W., Jr., Gleason, M. L., Jenco, J. H., & Christinas, N. C. (1993). Assessing the accuracy, intra-rater repeatability, and inter-rater reliability of disease assessment systems. Phytopathology, 83, 806–812.CrossRefGoogle Scholar
  27. Parker, S. R., Shaw, M. W., & Royle, D. J. (1995). The reliability of visual estimates of disease severity on cereal leaves. Plant Pathology, 43, 856–865.CrossRefGoogle Scholar
  28. Rodrigues, F. A., Datnoff, L. E., Korndorfer, G. H., Seebold, K. W., & Rush, M. C. (2001). Effect of silicon and host resistance on sheath blight development in rice. Plant Disease, 85, 827–832.CrossRefGoogle Scholar
  29. Stonehouse, J. (1994). Assessment of andean bean diseases using visual keys. Plant Pathology, 43, 519–527.CrossRefGoogle Scholar
  30. Vale, F. X. R., Fernandes Filho, E. I., & Liberato, J. R. (2003). QUANT: A software for plant disease severity assessment. In R. Close; M. Braithwaite, & I. Havery (Eds.), Proceedings of the 8 th international congress of plant pathology (pp.105). New Zealand.Google Scholar
  31. Yadav, N. V., Vos, S. M., Bock, C. H., & Wood, B. W. (2012). Development and validation of standard area diagrams to aid assessment of pecan scab symptoms on fruit. Plant Pathology, 61. doi: 10.1111/j.1365-3059.2012.02641.x.
  32. Yi, Q., Wang, P. P., & He, Y. (2008). Reliability analysis for continuous measurements: equivalence test for agreement. Statistics in Medicine, 27, 2816–2825.PubMedCrossRefGoogle Scholar
  33. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • Jonas Alberto Rios
    • 1
  • Daniel Debona
    • 1
  • Henrique Silva Silveira Duarte
    • 1
  • Fabrício Avila Rodrigues
    • 1
  1. 1.Department of Plant Pathology, Laboratory of Host-Parasite InteractionViçosa Federal UniversityViçosaBrazil

Personalised recommendations