European Journal of Plant Pathology

, Volume 134, Issue 1, pp 131–144 | Cite as

RNAi silencing of the Meloidogyne incognita Rpn7 gene reduces nematode parasitic success

  • Junhai Niu
  • Heng Jian
  • Jianmei Xu
  • Changlong Chen
  • Quanxin Guo
  • Qian Liu
  • Yangdong Guo
Article

Abstract

RNA interference (RNAi) techniques provide a major breakthrough in functional analysis for plant parasitic nematodes (PPNs). It offers the possibility of identifying new essential targets and consequently developing new resistance transgenes. To validate the potential of Mi-Rpn7 as a target for controlling root knot nematode Meloidogyne incognita and to evaluate the feasibility of our modified platform for assessing silencing phenotypes, we knocked down the Rpn7 gene of M. incognita using RNAi in vitro and in vivo. After soaking with 408-bp Rpn7 dsRNA, pre-parasitic second-stage juvenile (J2) nematodes showed specific transcript knockdown, resulting in an interrupted locomotion in an attraction assay with Pluronic gel medium, and consequently in a reduction of nematode infection ranging from 55.2% to 66.5%. With in vivo expression of Rpn7 dsRNA in transformed composite plants, the amount of egg mass per gram root tissue was reduced by 34% (P < 0.05) and the number of eggs per gram root tissue was reduced by 50.8% (P < 0.05). Our results demonstrated that the silencing of the Rpn7 gene in M. incognita J2s significantly reduced motility and infectivity. Although it does not confer complete resistance, Mi-Rpn7 RNAi in hairy roots produced significant negative impacts on reproduction and motility of M. incognita. In addition, the presented modified procedure provides technique reference for PPN genes functional analysis or target screening.

Keywords

Meloidogyne incognita Rpn7 RNAi Composite plant Reproduction Motility 

References

  1. Abad, P., Gouzy, J., Aury, J. M., et al. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915.PubMedCrossRefGoogle Scholar
  2. Alkharouf, N. W., Klink, V. P., & Matthews, B. F. (2007). Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Experimental Parasitology, 115, 247–258.PubMedCrossRefGoogle Scholar
  3. Bakhetia, M., Charlton, W. L., Urwin, P. E., et al. (2005). RNA interference and plant parasitic nematodes. Trends in Plant Science, 10, 362–367.PubMedCrossRefGoogle Scholar
  4. Bakhetia, M., Urwin, P. E., & Atkinson, H. J. (2007). qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Molecular Plant-Microbe Interactions, 20, 306–312.PubMedCrossRefGoogle Scholar
  5. Byrd, D. W., Kirkpatrick, T., & Barker, K. R. (1983). An improved technique for clearing and staining plant tissue for detection of nematodes. Journal of Nematology, 15, 142–143.Google Scholar
  6. Cao, D., Hou, W. S., Song, S. K., et al. (2009). Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell, Tissue and Organ Culture, 96, 45–52.CrossRefGoogle Scholar
  7. Charlton, W. L., Harel, H. Y., Bakhetia, M., et al. (2010). Additive effects of plant expressed double-stranded RNAs on root-knot nematode development. International Journal for Parasitology, 40, 855–864.PubMedCrossRefGoogle Scholar
  8. Chen, H., Nelson, R. S., & Sherwood, J. L. (1994). Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques, 16, 664–670.PubMedGoogle Scholar
  9. Chen, Q., Rehman, S., Smant, G., et al. (2005). Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Molecular Plant-Microbe Interactions, 18, 621–625.PubMedCrossRefGoogle Scholar
  10. Chi-Ham, C. L., Clark, K. L., & Bennett, A. B. (2010). The intellectual property landscape for gene suppression technologies in plants. Nature Biotechnology, 28, 32–36.PubMedCrossRefGoogle Scholar
  11. Chitwood, D. J. (2003). Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Management Science, 59, 748–753.PubMedCrossRefGoogle Scholar
  12. Collier, R., Fuchs, B., Walter, N., et al. (2005). Ex vitro chimeric plants: an inexpensive, rapid method for root biology. The Plant Journal, 43, 449–457.PubMedCrossRefGoogle Scholar
  13. Dafny-Yelin, M., Chung, S. M., Frankman, E. L., et al. (2007). pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants. Plant Physiology, 45, 1272–1281.CrossRefGoogle Scholar
  14. Dalzell, J. J., McMaster, S., Johnston, M. J., et al. (2009). Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles. International Journal for Parasitology, 39, 1503–1516.PubMedCrossRefGoogle Scholar
  15. Dubreuil, G., Magliano, M., Deleury, E., et al. (2007). Transcriptome analysis of root-knot nematode functions induced in the early stages of parasitism. New Phytologist, 176, 426–436.PubMedCrossRefGoogle Scholar
  16. Furner, I. J., Huffman, G. A., Amasino, R. M., et al. (1986). An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature, 319, 422–427.CrossRefGoogle Scholar
  17. Haegeman, A., Vanholme, B., & Gheysen, G. (2009). Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis. Molecular Plant Pathology, 10, 389–401.PubMedCrossRefGoogle Scholar
  18. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRefGoogle Scholar
  19. Huang, G., Allen, R., Davis, E. L., et al. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences of the United States of America, 103, 14302–14306.PubMedCrossRefGoogle Scholar
  20. Ibrahim, H. M., Alkharouf, N. W., Meyer, S. L., et al. (2011). Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Experimental Parasitology, 127, 90–99.PubMedCrossRefGoogle Scholar
  21. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS-fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901–3907.PubMedGoogle Scholar
  22. Jian, B., Hou, W., Wu, C., Liu, B., Liu, W., Song, S., et al. (2009). Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biology, 9, 1–14.CrossRefGoogle Scholar
  23. Kamath, R. S., Fraser, A. G., Dong, Y., et al. (2003). Systemic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231–237.PubMedCrossRefGoogle Scholar
  24. Kereszt, A., Li, D. X., Indrasumunar, A., et al. (2007). Testing gene function in transgenic soybean roots. Nature Protocols, 2, 948–952.PubMedCrossRefGoogle Scholar
  25. Klink, V. P., Kim, K. H., Martins, V., et al. (2009). A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta, 230, 53–71.PubMedCrossRefGoogle Scholar
  26. Lee, M. H., Yoon, E. S., Jeong, J. H., et al. (2004). Agrobacterium rhizogenes-mediated transformation of Taraxacum platy-carpum and changes of morphological characters. Plant Cell Reports, 22, 822–827.PubMedCrossRefGoogle Scholar
  27. Li, J., Todd, T. C., Oakley, T. R., et al. (2010a). Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe. Planta, 232, 775–785.CrossRefGoogle Scholar
  28. Li, J., Todd, T. C., & Trick, H. N. (2010b). Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Reports, 29, 113–123.CrossRefGoogle Scholar
  29. Lilley, C. J., Goodchild, S. A., Atkinson, H. J., et al. (2005). Cloning and characterization of a Heterodera glycines aminopeptidase cDNA. International Journal for Parasitology, 35, 1577–1585.PubMedCrossRefGoogle Scholar
  30. Lilley, C. J., Bakhetia, M., Charlton, W. L., et al. (2007). Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology, 8, 701–711.PubMedCrossRefGoogle Scholar
  31. Lindbo, J. A., & Dougherty, W. G. (2005). Plant pathology and RNAi: a brief history. Annual Review of Phytopathology, 43, 191–204.PubMedCrossRefGoogle Scholar
  32. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326.PubMedCrossRefGoogle Scholar
  33. Niu, J. H., Jian, H., Xu, J. M., et al. (2010). RNAi technology extends its reach: engineering plant resistance against harmful eukaryotes. African Journal of Biotechnology, 9, 7573–7582.Google Scholar
  34. Park, J., Lee, K., Lee, S. J., et al. (2008). The efficiency of RNA interference in Bursaphelenchus xylophilus. Molecules and Cells, 26, 81–86.PubMedGoogle Scholar
  35. Reynolds, A. M., Dutta, T. K., Curtis, R. H., et al. (2011). Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. Journal of the Royal Society, Interface, 8, 568–577.PubMedCrossRefGoogle Scholar
  36. Rosso, M. N., Dubrana, M. P., Cimbolini, N., et al. (2005). Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Molecular Plant-Microbe Interactions, 18, 615–620.PubMedCrossRefGoogle Scholar
  37. Rosso, M. N., Jones, J. T., & Abad, P. (2009). RNAi and functional genomics in plant parasitic nematodes. Annual Review of Phytopathology, 47, 207–232.PubMedCrossRefGoogle Scholar
  38. Rual, J. F., Ceron, J., Koreth, J., et al. (2004). Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Research, 14, 2162–2168.PubMedCrossRefGoogle Scholar
  39. Schwartz, A. L., & Ciechanover, A. (1999). The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annual Review of Medicine, 50, 57–74.PubMedCrossRefGoogle Scholar
  40. Shingles, J., Lilley, C. J., Atkinson, H. J., et al. (2007). Meloidogyne incognita: molecular and biochemical characterization of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Experimental Parasitology, 115, 114–120.PubMedCrossRefGoogle Scholar
  41. Sonnichsen, B., Koski, L. B., Walsh, A., et al. (2005). Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature, 434, 462–469.PubMedCrossRefGoogle Scholar
  42. Steeves, R. M., Todd, T. C., Essig, J. S., et al. (2006). Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Functional Plant Biology, 33, 991–999.CrossRefGoogle Scholar
  43. Takahashi, M., Iwasaki, H., Inoue, H., et al. (2002). Reverse genetic analysis of the Caenorhabditis elegans 26S proteasome subunits by RNA interference. Biological Chemistry, 383, 1263–1266.PubMedCrossRefGoogle Scholar
  44. Urwin, P. E., Lilley, C. J., & Atkinson, H. J. (2002). Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions, 15, 747–752.PubMedCrossRefGoogle Scholar
  45. Wallace, H. R. (1968). The dynamics of nematode movement. Annual Review of Phytopathology, 6, 91–114.CrossRefGoogle Scholar
  46. Wang, C., Bruening, G., & Williamson, V. M. (2009a). Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel. Journal of Chemical Ecology, 35, 1242–1251.CrossRefGoogle Scholar
  47. Wang, C., Lower, S., & Williamson, V. M. (2009b). Application of pluronic gel to the study of root-knot nematode behaviour. Nematology, 11, 453–464.CrossRefGoogle Scholar
  48. Wang, C., Lower, S., Thomas, V. P., et al. (2010). Root-knot nematodes exhibit strain-specific clumping behavior that is inherited as a simple genetic trait. PLoS ONE, 5, e15148.PubMedCrossRefGoogle Scholar
  49. Yadav, B. C., Veluthambi, K., & Subramaniam, K. (2006). Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Molecular and Biochemical Parasitology, 148, 219–222.PubMedCrossRefGoogle Scholar
  50. Yelin, M. D., Chung, S. M., Frankman, E. L., & Tzfira, T. (2007). pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants. Plant Physiology, 145, 1272–1281.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Junhai Niu
    • 1
    • 2
    • 3
  • Heng Jian
    • 1
  • Jianmei Xu
    • 1
  • Changlong Chen
    • 1
  • Quanxin Guo
    • 1
  • Qian Liu
    • 1
  • Yangdong Guo
    • 3
  1. 1.Key Laboratory of Plant Pathology, Ministry of Agriculture of China, Department of Plant PathologyChina Agricultural UniversityBeijingChina
  2. 2.Tropical Crops Genetic Resources Institute, CATASDanzhouChina
  3. 3.Department of Vegetable ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations