Advertisement

European Journal of Plant Pathology

, Volume 133, Issue 3, pp 517–522 | Cite as

Identification and RAPD-typing of Ewingella americana on cultivated mushrooms in Castilla-La Mancha, Spain

  • Ana J. González
  • Francisco J. Gea
  • María J. Navarro
  • Ana M. Fernández
Article

Abstract

Ewingella americana was identified as the causal agent of internal stipe necrosis on symptomatic samples collected from mushroom farms located in Castilla-La Mancha, Spain, during the years 2008 to 2010. Six isolates obtained from Agaricus bisporus (button mushroom) and Pleurotus ostreatus (oyster mushroom) were studied to gain insight into their diversity. According to their biochemical profile, the isolates corresponded to biogroup 1. RAPD typing was performed directly with broth cultures of bacteria using two selected primers, and the profiles obtained were used to define four RAPD types. The pathogenicity of isolates was tested by artificial inoculation in A. bisporus and P. ostreatus, in both of which the pathogen reproduced the disease symptoms, and was reisolated from inoculated specimens. Artificial inoculations of the bacteria on Pleurotus eryngii (king oyster mushroom) reproduced the symptoms of the disease, but, until now, this bacterium has not been isolated from this fungus.

Keywords

Button mushroom Enterobacteria King oyster mushroom Mushroom disease Oyster mushroom 

Notes

Acknowledgements

This work was supported by the Governments of the Principality of Asturias and Autonomous Community of Castilla-La Mancha. Ana Mª Fernández is a recipient of a grant from the “Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)”.

References

  1. Anonymous (2005). http://www2.uni-jena.de/biologie/mikrobio/tipps/rapd.html (accessed on November 9, 2009)
  2. Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl. Acid Research, 17, 7843–7853.CrossRefGoogle Scholar
  3. Felsenstein, J. (1989). PHYLIP - phylogeny inference package (version 3.2). Cladistics, 5, 164–166.Google Scholar
  4. Fletcher, J. T., & Gaze, R. H. (2008). Mushroom pest and disease control. London: Manson.Google Scholar
  5. González, A. J., González-Varela, G., & Gea, F. J. (2009). Brown blotch caused by Pseudomonas tolaasii on cultivated Pleurotus eryngii in Spain. Plant Disease, 93, 667.CrossRefGoogle Scholar
  6. Goszczynska, T., & Serfontein, J. J. (1998). Milk-tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. Journal of Microbiological Methods, 32, 65–72.CrossRefGoogle Scholar
  7. Grimont, P. A. D., Farmer, J. J., III, Grimont, F., Asbury, M. A., Brenner, D. J., & Deval, C. (1983). Ewingella americana gen nov., sp nov, a new Enterobacteriaceae isolated from clinical specimens. Annual Review of Microbiology, 134, 39–52.Google Scholar
  8. Gwo-Fang, Y., Chiung-Shu, L., & Chann-Chao, C. (1995). Differentiation of Aspergillus parasiticus from Aspergillus sojae by random amplification of polymorphic DNA. Applied and Environmental Microbiology, 61, 2384–2387.Google Scholar
  9. Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence wighting, position-specific gap penalties and weighting matrix choice. Nucleic Acid Research, 22, 4673–4680.CrossRefGoogle Scholar
  10. Hugh, R., & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology, 66, 24–26.PubMedGoogle Scholar
  11. Inglis, P. W., & Peberdy, J. F. (1996). Isolation of Ewingella americana from the cultivated mushroom, Agaricus bisporus. Current Microbiology, 33, 334–337.PubMedCrossRefGoogle Scholar
  12. Inglis, P. W., Burden, J. L., & Peberdy, J. F. (1996). Evidence for the association of the enteric bacterium Ewingella americana with internal stipe necrosis of Agaricus bisporus. Microbiology, 142, 3253–3260.CrossRefGoogle Scholar
  13. Jansing, H., & Rudolph, K. (1990). A sensitivity and quick test for determination of bean seed infestation by Pseudomonas syrinage pv. phaseolicola. Z Pflanzenk Pflanzen, 97, 42–55.Google Scholar
  14. King, E. D., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescein. Laboratory and Clinical Medicine, 44, 301–307.Google Scholar
  15. Laconcha, I., López-Molina, N., Rementería, A., Audicana, A., Perales, I., & Garaizar, J. (1998). Phage typing combined with pulsed-field gel electrophoresis and random amplified polymorphic DNA increases discrimination in the epidemiological analysis of Salmonella enteritidis strains. International Journal of Food Microbiology, 40, 27–34.PubMedCrossRefGoogle Scholar
  16. Lee, Ch-J, Jhune, Ch-S, Cheong, J-Ch, Yun, H.-S., & Cho, W.-D. (2009). Occurrence of internal stipe necrosis of cultivated mushrooms (Agaricus bisporus) caused by Ewingella americana in Korea. Mycobiology, 37, 62–66.CrossRefGoogle Scholar
  17. Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. Oxford: Blackwell Scientific.Google Scholar
  18. Lin, A. W., Usera, M. A., Barnet, T. J., & Goldsby, R. A. (1996). Application of random amplified polymorphic DNA analysis to differentiate strains of Salmonella enteritidis. Journal of Clinical Microbiology, 34, 870–876.PubMedGoogle Scholar
  19. Miyata, M., Aoki, T., Inglish, V., Yoshida, T., & Endo, M. (1995). RAPD analysis of Aeromonas salmonicida and Aeromonas hydrophila. Journal of Applied Bacteriology, 79, 181–185.PubMedCrossRefGoogle Scholar
  20. Nhung, P. H., Ohkusu, K., Mishima, N., Noda, M., Shah, M. M., Sun, X., Hayashi, M., & Ezaki, T. (2007). Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagnostic Microbiology and Infectious Disease, 58, 153–161.CrossRefGoogle Scholar
  21. Orskov, F., & Orskov, I. (1993). Summary of a workshop on the clone concept. Epidemiology, taxonomy and evolution of the Enterobacteriaceae and other bacteria. Journal of Infectious Diseases, 148, 346–357.CrossRefGoogle Scholar
  22. Pound, M. W., Tart, S. B., & Okoye, O. (2007). Multidrug-resistant Ewingella americana: a case report and review of the literature. The Annals of Pharmacotherapy, 41, 2066–2070.PubMedCrossRefGoogle Scholar
  23. Reyes, J. E., Venturini, M. E., Oria, R., & Blanco, D. (2004). Prevalence of Ewingella americana in retail fresh cultivated mushrooms (Agaricus bisporus, Lentinula edodes and Pleurotus ostreatus) in Zaragoza (Spain). FEMS Microbiology Ecology, 47, 291–296.PubMedCrossRefGoogle Scholar
  24. Roy Chowdhury, P., & Heinemann, J. A. (2006). The general secretory pathway of Burkholderia gladioli pv. agaricicola BG164R is necessary for cavity disease in white button mushrooms. Applied and Environmental Microbiology, 72, 3558–3565.PubMedCrossRefGoogle Scholar
  25. Roy Chowdhury, P., Pay, J., & Braithwaite, M. (2007). Isolation, identification and ecology of Ewingella americana (the causal agent of internal stipe necrosis) from cultivated mushrooms in New Zealand. Australasian Plant Pathology, 36, 424–428.CrossRefGoogle Scholar
  26. Shawkey, M. D., Mills, K. L., Dale, C., & Hill, G. E. (2005). Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microbial Ecology, 50, 40–47.PubMedCrossRefGoogle Scholar
  27. Smits, T. H., Rezzonico, F., Kamber, T., Blom, J., Goesmann, A., Frey, J. E., & Duffy, B. (2010). Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Molecular Plant-Microbe Interactions, 23, 384–393.PubMedCrossRefGoogle Scholar
  28. Soler Rivas, C., Juncà Blanch, G., & Wichers, H. J. (2004). La mancha bacteriana en champiñón y setas. In: Avances en la tecnología de la producción comercial del champiñón y otros hongos cultivados, 2. Patronato de Promoción Económica. Diputación Provincial de Cuenca (ed.), pp. 171–187.Google Scholar
  29. Struelens, M. J., et al. (1996). Consensus guidelines for appropiate use and evaluation of microbial epidemiologic typing systems. Clinical Microbiology and Infection, 2, 2–11.PubMedCrossRefGoogle Scholar
  30. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research, 18, 6531–6535.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Ana J. González
    • 1
  • Francisco J. Gea
    • 2
  • María J. Navarro
    • 2
  • Ana M. Fernández
    • 1
  1. 1.Laboratorio de FitopatologíaServicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA)VillaviciosaSpain
  2. 2.Centro de Investigación, Experimentación y Servicios del champiñón (CIES)CuencaSpain

Personalised recommendations