European Journal of Plant Pathology

, Volume 136, Issue 1, pp 135–143 | Cite as

Genetic variability of tolerance to Verticillium albo-atrum and Verticillium dahliae in Medicago truncatula

  • A. Negahi
  • A. Sarrafi
  • A. Ebrahimi
  • P. Maury
  • J. M. Prospéri
  • C. Ben
  • M. Rickauer


Verticillium wilt caused by Verticillium albo-atrum and Verticillium dahliae is responsible for yield losses in many economically important crops. The capacity of pathogenic fungi to adapt to new hosts is a well-known threat to the durability of resistant crop varieties. In the present work, 25 Medicago truncatula genotypes from a core collection and six V. albo-atrum and V. dahliae strains were used to study the potential of non-host Verticillium strains isolated from different plant species to infect this legume plant and the plant’s susceptibility to the pathogens. The experiment was designed as factorial with randomised complete blocks and with three repetitions. The wilt symptoms caused by V. albo-atrum and V. dahliae were scored on a disease index scale from 0 to 4, during 30 days after inoculation of 10-day-old plantlets. Disease severity was quantified by maximum symptom scores (MSS) and areas under the disease progress curves (AUDPC), which integrate the time course of symptom development. Highly significant differences were observed among plant genotypes and fungal strains, and their interaction was also significant. The correlation between MSS and AUDPC was 0.86. The most severe symptoms were caused by the alfalfa strain V. albo-atrum V31-2 and the least severe by V. dahliae JR2, as shown by mean values obtained on the 25 genotypes. M. truncatula genotype TN8.3 was the most susceptible genotype by mean values obtained with the six fungal strains, whereas F11013-3, F83005.9 and DZA45.6 were highly resistant to all strains studied. The results can be used to choose parents for studying the genetics of resistance in Medicago truncatula to Verticillium strains with different levels of aggressiveness.


Disease Resistance Susceptibility Vascular wilt Host-pathogen interaction Non-host 



The authors thank the French Government for support of A. Negahi with a PhD grant; B.P.H.J. Thomma (University of Wageningen, Netherlands) for providing strains Vaa VA1, Vaa 5431, Vd JR2 and Vd S26; A. von Tiedemann (Georg-August University Göttingen, Germany) for providing strain Vaa LPP0323; and L. Gentzbittel (ENSAT, Toulouse, France) for helpful discussions.


  1. Acharya, S. N., & Huang, H. C. (2003). Breeding alfalfa for resistance to verticillium wilt: a sound strategy. Advances in Plant Disease Management, 2003, 345–371.Google Scholar
  2. Ameline-Torregrosa, C., Cazaux, M., Danesh, D., Chardon, F., Cannon, S. B., Esquerré-Tugayé, M. T., et al. (2008). Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Molecular Plant-Microbe Interactions, 21, 61–69.PubMedCrossRefGoogle Scholar
  3. Atallah, Z. K., Maruthachalam, K., du Toit, L., Koike, S. T., Davis, R. M., Klosterman, S. J., et al. (2010). Population analyses of the vascular plant pathogen Verticillium dahliae detect recombination and transcontinental gene flow. Fungal Genetics and Biology, 47, 416–422.PubMedCrossRefGoogle Scholar
  4. Aubé, C., & Sackston, W. E. (1964). Verticillium wilt of forage legumes in Canada. Canadian Journal of Plant Science, 44, 427–432.CrossRefGoogle Scholar
  5. Barbara, D. J., & Clewes, E. (2003). Plant pathogenic Verticillium species: how many of them are there? Molecular Plant Pathology, 4, 297–305.PubMedCrossRefGoogle Scholar
  6. Barker, D. G., Bianchi, S., Blondon, F., Dattée, Y., Duc, G., Essad, S., et al. (1990). Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Molecular Biology Reporter, 8, 40–49.CrossRefGoogle Scholar
  7. Ben, C., Toueni, M., Montanari, S., Tardin, M.C., Fervel, A., Negahi, S., et al. (2012). Natural diversity in the model legume Medicago truncatula allows identification of distinct genetic mechanisms conferring partial resistance to Verticillium wilt. doi: 1093/jxb/ers337.
  8. Bhat, R. G., & Subbarao, K. V. (1999). Host range specificity in Verticillium dahliae. Phytopathology, 89, 1218–1225.PubMedCrossRefGoogle Scholar
  9. Branca, A., Paape, T. D., Zhou, P., Briskine, R., Farmer, A. D., Mudge, J., et al. (2011). Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proceedings of the National Academy of Science USA, 108, 864–870.CrossRefGoogle Scholar
  10. Campbell, C., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.Google Scholar
  11. Choi, H. K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J. H., et al. (2004). A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 166, 1463–1502.PubMedCrossRefGoogle Scholar
  12. Christen, A. A., & Peaden, R. N. (1981). Verticillium wilt in alfalfa. Plant Disease, 65, 319–321.CrossRefGoogle Scholar
  13. Church, V. J., & McCartney, H. A. (1995). Occurrence of Verticillium dahlia on sunflower (Helianthus annuus) in the UK. Annals of Applied Biology, 127, 49–56.CrossRefGoogle Scholar
  14. Djebali, N., Jauneau, A., Ameline-Torregrosa, C., Chardon, F., Jaulneau, V., Mathe, C., et al. (2009). Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Molecular Plant-Microbe Interactions, 22, 1043–1052.PubMedCrossRefGoogle Scholar
  15. Erwin, J. A. G. (1973). Verticillium wilt of soybean. Australasian Plant Pathology Society Newsletter, 2(3), 18.CrossRefGoogle Scholar
  16. Foster-Hartnett, D., Danesh, D., Pencula, S., Sharopova, N., Endre, G., Vandenbosch, K. A., et al. (2007). Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Plant Pathology, 8, 307–319.CrossRefGoogle Scholar
  17. Fradin, E. F., & Thomma, P. H. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86.PubMedCrossRefGoogle Scholar
  18. Fradin, E. F., Zhang, Z., Ayala, J. C. J., Castroverde, C. D. M., Nazar, R. N., Robb, J., et al. (2009). Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology, 150, 320–332.PubMedCrossRefGoogle Scholar
  19. Friebertshauser, G. E., & de Vay, J. E. (1982). Differential effects of the defoliating and non-defoliating pathotypes of Verticillium dahliae upon the growth and development of Gossypum hirsutum. Phytopathology, 72, 872–877.CrossRefGoogle Scholar
  20. Huang, C. H., Acharya, S. N., Jue Hou, T., Erickson, R. S., Dalton, R. E., & Mueller, C. A. (1999). Susceptibility of Chinese alfalfa cultivars to Verticillium wilt. Plant Pathology, 8, 67–72.Google Scholar
  21. Imin, N., Nizamidin, M., Daniher, D., Nolan, K. E., Rose, R. J., & Rolfe, B. G. (2005). Proteomic analysis of somatic embryogenesis in Medicago truncatula explant cultures grown under 6-Benzylaminopurine and 1-Naphthaleneacetic Acid treatments. Plant Physiology, 137, 1250–1260.PubMedCrossRefGoogle Scholar
  22. Jaulneau, V., Cazaux, M., Wong Sak Hoi, J., Fournier, S., Esquerré-Tugayé, M. T., Jacquet, C., et al. (2010). Host and non-host resistance in Medicago-Colletotrichum interactions. Molecular Plant Microbe Interaction, 23, 1107–1117.CrossRefGoogle Scholar
  23. Julier, B., Guy, P., Castillo-Acuna, C., Caubel, G., Ecallé, C., Esquibet, M., et al. (1996). Genetic variation for disease and nematode resistances and forage quality in perennial diploid and tetraploid lucerne populations (Medicago sativa L.). Euphytica, 91, 241–250.Google Scholar
  24. Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, Pathogenicity, and Management of Verticillium Species. Annual Review of Phytopathology, 47, 39–62.PubMedCrossRefGoogle Scholar
  25. Koike, S. T., Subbarao, K. V., Davis, R. M., Gordon, T. R., & Hubbard, J. C. (1994). Verticillium wilts of cauliflower in California. Plant Disease, 78, 116–1121.CrossRefGoogle Scholar
  26. Mehrabi, R., Bahkali, A. H., Abd-Elsalam, K. A., Moslem, M., M’Barek, S. B., Gohari, A. M., et al. (2011). Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiology Reviews, 35, 542–554.PubMedCrossRefGoogle Scholar
  27. Molinéro-Demilly, V., Montegano, B., Julier, B., Giroult, C., Baudouin, P., Chosson, J. F., et al. (2007). Resistance to Verticillum albo-atrum in lucerne (Medicago sativa L.) to distinguish between varieties. Euphytica, 153, 227–232.CrossRefGoogle Scholar
  28. Paternotte, S. J., & Van Kesteren, H. A. (1993). A new aggressive strain of Verticillium albo-atrum in Verticillium resistant cultivars of tomato in the Netherlands. Netherlands Journal of Plant Pathology, 99, 169–172.CrossRefGoogle Scholar
  29. Pennypacker, B. W. (2000). Differential impact of carbon assimilation on the expression of quantitative and qualitative resistance in alfalfa (Medicago sativa). Physiological and Molecular Plant Pathology, 57, 87–93.CrossRefGoogle Scholar
  30. Ramirez-Suero, M., Khanshour, A., Martinez, Y., & Rickauer, M. (2010). A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum. European Journal of Plant Pathology, 126, 517–530.CrossRefGoogle Scholar
  31. Ronfort, J., Bataillon, T., Santoni, S., Delalande, M., David, J. L., & Prospéri, J. M. (2006). Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biology, 6, 28–41.PubMedCrossRefGoogle Scholar
  32. Rose, R. J., Nolan, K. E., & Bicego, L. (1999). The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula: implications for regenerability via somatic embryogenesis. Journal of Plant Physiology, 155, 788–791.CrossRefGoogle Scholar
  33. Schnathorst, W. C. (1981). Life cycle and epidemiology of Verticillium. In M. A. Mace, A. A. Bell, & C. H. Beckman (Eds.), Fungal Wilt Diseases of Plants (pp. 81–111). New York: Academic.Google Scholar
  34. Smith, E. G., Acharya, S. N., & Huang, H. C. (1995). Economics of growing Verticillium wilt resistant and adapted alfalfa cultivars in Western Canada. Agronomy Journal, 87, 1206–1210.CrossRefGoogle Scholar
  35. Stewart, S. A., Hodge, S., Ismail, N., Mansfield, J. W., Feys, B. J., Prospéri, J. M., et al. (2009). The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Molecular Plant-Microbe Interactions, 22, 1645–1655.PubMedCrossRefGoogle Scholar
  36. Tivoli, B., Baranger, A., Avila, C., Banniza, S., Barbetti, M., Chen, W., et al. (2006). Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica, 147, 223–253.CrossRefGoogle Scholar
  37. Torregrosa, C., Cluzet, S., Fournier, J., Huguet, T., Gamas, P., Prospéri, J. M., et al. (2004). Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Molecular Plant-Microbe Interactions, 17, 272–282.CrossRefGoogle Scholar
  38. Vailleau, F., Sartorel, E., Jardinaud, M., Chardon, F., Genin, S., Huguet, T., et al. (2007). Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Molecular Plant-Microbe Interactions, 20, 159–167.PubMedCrossRefGoogle Scholar
  39. Vandemark, G. J., Larsen, R. C., & Hughes, T. J. (2006). Heritability of resistance to Verticillium wilt in alfalfa. Plant Disease, 90, 314–318.CrossRefGoogle Scholar
  40. Yang, S., Gao, M., Xu, C., Gao, J., Deshpande, S., Lin, S., et al. (2008). Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Science USA, 105(34), 12164–12169.CrossRefGoogle Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • A. Negahi
    • 1
    • 2
  • A. Sarrafi
    • 1
    • 2
    • 6
  • A. Ebrahimi
    • 4
  • P. Maury
    • 3
  • J. M. Prospéri
    • 5
  • C. Ben
    • 1
    • 2
  • M. Rickauer
    • 1
    • 2
  1. 1.Université de Toulouse; INP, UPS; EcoLab (Laboratoire D’Ecologie Fonctionnelle et Environnement); Ecole Nationale Supérieure Agronomique de ToulouseCastanet-TolosanFrance
  2. 2.CNRS, UMR 5245EcoLabCastanet-TolosanFrance
  3. 3.Université de Toulouse, INP, ENSAT, UMR AGIRCastanet-Tolosan cedexFrance
  4. 4.Faculty of Agriculture and Natural Resources, Science and Research BranchIslamic Azad UniversityTehranIran
  5. 5.INRA, UMR AGAP 1334MontpellierFrance
  6. 6.Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), UMR 5245 CNRS, Ecole Nationale Supérieure Agronomique de ToulouseCastanet-TolosanFrance

Personalised recommendations