Genetic variability of Iranian strains of Pseudomonas syringae pv. syringae causing bacterial canker disease of stone fruits
- 510 Downloads
- 7 Citations
Abstract
Strains of Pseudomonas syringae pv. syringae (Pss) were isolated from healthy and diseased stone fruits tissues sampled from 38 stone fruits orchard sites in Iran in 2010 and 2011. These strains were tested for pathogenicity and the presence of the syrB gene and were genetically characterized by using ERIC (enterobacterial repetitive intergenic consensus), REP (repetitive extragenic palindromes), and BOXAIR and IS50 (insertion sequences) primers and PCR. All 78 strains of Pss tested were moderately to highly pathogenic on Loring peach seedlings. A total of 78 isolates of the Pss amplified a 752-bp fragment with the syrB primers. To assess genetic diversity among the strains, genomic DNA was extracted from strains and used in rep-PCR and IS50-PCR analysis. Cluster analysis was performed using UPGMA. The strains of Pss were separated into nine distinguishable genotypic groups by the combination data set of both rep-PCR and IS50-PCR at 73 % similarity level. There was no significant correlation between genetic diversity and geographical origin of the isolates. These results indicate that a combination of rep-PCR and IS50-PCR fingerprinting can be used as a high resolution genomic fingerprinting method for elucidating intrapathovar diversity among strains of Pss. The results of this study demonstrated the existence of a considerable genetic diversity among Pss strains causing canker of stone fruit trees in Iran. In this study, genetic variability in Iranian strains of Pss were established, which will be of immense use in the development of resistant genotypes against this bacterial pathogen.
Keywords
Bacterial canker Pseudomonas syringae pv. syringae Rep-PCR IS50-PCR Stone fruitsNotes
Acknowledgments
The authors wish to thank Dr. Pezhman Khodaygan (Department of Plant Protection, Vali-E-Asr University of Rafsanjan, Iran) for supplying some of their isolates and olso help in the interpretation of the dendrograms.
References
- Ashorpour, M., Niknejad Kazempour, M., & Ramezanie, M. (2008). Occurrence of Pseudomonas syringae pv. syringae the causal agent of bacterial canker on olives (Olea europaea) in Iran. Science Asia, 34, 323–326.CrossRefGoogle Scholar
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1992). Current protocols in molecular biology (Vol. I). New York: Greene Publishing Associates and Wiley- Interscience.Google Scholar
- Bahar, M., Mojtahedi, H., & Akhiani, A. (1982). Bacterial canker of apricot in Isfahan. Iranian. Journal of Plant Pathology, 18, 58–68.Google Scholar
- Banapour, A., Zakiee, Z., & Amani, G. (1990). Isolation of Pseudomonas syringae from sweet cherry in Tehran Province. Iranian Journal of Plant Pathology, 26, 67–72.Google Scholar
- Berg, D. E., & Howe, M. M. (Eds.). (1989). Mobile DNA. Washington DC: American Society of Microbiology Publication.Google Scholar
- Bradbury, J. F. (1986). Pseudomonas syringae pv. syringae, p. 173–177. In: Guide to Plant Pathogenic Bacteria. 2nd Edition. CAB International Mycological Institute, Kew, England, 332 pp.Google Scholar
- Bultreys, A., Gheysen, I., & de Hoffmann, E. (2006). Yersiniabactin production by Pseudomonas syringae and Escherichia coli and description of a second yersiniabactin locus evolutionary group. Applied and Environmental Microbiology, 72, 3814–3825.PubMedCrossRefGoogle Scholar
- Cuppels, D. A., Moore, R. A., & Morris, V. L. (1990). Construction and use of a nonradioactive DNA hybridization probe for detection of Pseudomonas syringae pv. tomato on tomato plants. Applied and Environmental Microbilogyl, 56, 1743–1749.Google Scholar
- Fariis, J. S. (1969). On the cophenetic correlation coefficient. Systematic Zoology, 18, 279–285.CrossRefGoogle Scholar
- Gilbert, V., Legros, F., Maraite, H., & Bultreys, A. (2009). Genetic analysis of Pseudomonas syringae isolates from Belgian fruit orchards reveal genetic variability and isolate-host relationships within the pathovar syringae and help identify both races of the pathovar morsprunorum. European Journal of Plant Pathology, 124, 199–218.CrossRefGoogle Scholar
- Goto, M. (1992). Fundamentals of bacterial plant pathology (p. 342). London: Academic Press Inc.Google Scholar
- Gross, D. C., & DeVay, J. E. (1977). Population dynamics and pathogenesis of Pseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin. Phytopathology, 67(475), 483.Google Scholar
- Gutiérrez-Barranquero, J. A., Arrebola, E., Pérez-García, A., Codina, J. C., Murillo, J., De Vicente, A., & Cazorla, F. M. (2008). Evaluation of phenotypic and genetic techniques to analyze diversity of Pseudomonas syringae pv. syringae strains isolates from mango trees. In M. B. Fatmi, A. Collmer, N. Iacobellis, J. W. Mansfield, J. Murillo, N. W. Schaad, & M. Ulrich (Eds.), Pseudomonas syringae Pathovars and related pathogens—identification, epidemiology and genomics (pp. 271–281). Netherlands: Springer.CrossRefGoogle Scholar
- Hattingh, M. J., & Roos, I. M. M. (1995). Bacterial canker. In E. I. Zehr, G. W. Bird, D. F. Ritchie, J. K. Uymoto, & J. M. Ogawa (Eds.), Compendium of stone fruit diseases (pp. 48–50). St. Paul: The Am. Phytopathol. Soc. Press.Google Scholar
- Kaluzna, M., Ferrante, P., Sobiczewiski, P., & Scortichini, M. (2010). Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST. Journal of Plant Pathology, 92, 781–787.Google Scholar
- Lee, B. M., Park, Y. J., Park, D. S., Kang, H. W., Kim, J. G., Kim, H., et al. (2005). The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 33, 577–586.PubMedCrossRefGoogle Scholar
- Little, E. L., Bostock, R. M., & Kirkapatric, B. C. (1998). Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruits in California. Appled and Environmental Microbiology, 64, 3818–3823.Google Scholar
- Louws, F. J., Rademaker, J. L. W., & de Bruijn, F. J. (1991). The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection and disease diagnosis. Annual Reveiws of Phytopathology, 37, 81–125.Google Scholar
- Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.PubMedGoogle Scholar
- Mahillon, J., & Chandler, M. (1998). Insertion sequences. Microbiology and Molecular Biology Reviews, 62, 725–744.PubMedGoogle Scholar
- Milgroom, M. G., & Fry, W. E. (1997). Contribution of population genetics to plant disease epidemiology and management. Advances in Botanical Research, 24, 1–30.CrossRefGoogle Scholar
- Najafi Pour, G., & Taghavi, S. M. (2011). Comparison of P. syringae pv. syringae from different hosts based on pathogenicity and BOX-PCR in Iran. Journal of Agricultural Science and Technology, 13, 431–442.Google Scholar
- Noble, D. H., Cother, E. J., Hailstones, D. L., Flack, M., Oxspring, L., & Hall, B. (2006). Characterisation of Pseudomonas syringae strains associated with a leaf disease of leek in Australia. European Journal of Plant Pathology, 115, 419–430.CrossRefGoogle Scholar
- Norelli, J. L., Aldwinckle, H. S., & Beer, S. V. (1984). Differential host pathogen interactions among cultivars of apple and strains of Erwinia amylovora. Phytopathology, 47, 136–139.CrossRefGoogle Scholar
- Ogawa, J. M., & English, H. (1991). Diseases of temperate zone tree fruit and nut crops. Publication 3345. Oakland: University of California Division of Agriculture and Natural Resources.Google Scholar
- Otta, J. D., & English, H. (1971). Serology and pathology of Pseudomonas syringae. Phytopathology, 61, 443–452.CrossRefGoogle Scholar
- Qing, C., Pengfei, Q., Renlin, X., Tambong, J. T., Djama, Z. R., & Wei, L. (2011). Comparison of three typing methods for evaluating the diversity of Pseudomonas fluorescens in the rhizosphere. Journal of Plant Sciences, 6, 52–65.CrossRefGoogle Scholar
- Quigley, N. B., & Gross, D. C. (1994). Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Molecular Plant-Microbe Interactions, 7, 78–90.PubMedCrossRefGoogle Scholar
- Rademaker, J. L. W., Louws, F. J., & de Bruijn, F. J. (1998). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: de Bruijn F. J. (Ed.) Molecular Microbial Ecology Manual, 3.4.3. (pp. 1–27). Dordrecht, The Ntherlands: Kluwer Academic Publisher.Google Scholar
- Rademaker, J. L. W., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterine, L., Vauterin, P., & de B ruijn, F. J. (2000). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. International Journal of Systematic and Evolution Microbiology, 50, 665–677.CrossRefGoogle Scholar
- Renick, L. J., Cogal, A. G., & Sundin, G. W. (2008). Phenotypic and genetic analysis of epiphytic Pseudomonas syringae populations from sweet cherry in Michigan. Plant Disease, 92, 372–378.CrossRefGoogle Scholar
- Rohlf, F. J. (2000). NTSYS-pc, numerical taxonomy and multivariate analysis system, version 2.1. New York: Exeter Publications.Google Scholar
- Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
- Schaad, N. W., Azad, H., Peet, R. C., & Panopoulos, N. J. (1989). Identification of Pseudomonas syringae pv. phaseolicola by a DNA hybridization probe. Phytopathology, 79, 903–907.CrossRefGoogle Scholar
- Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed., p. 373). St. Paul: APS Press.Google Scholar
- Scortichini, M., Marchesi, U., Dettori, M. T., & Rossi, M. P. (2003). Genetic diversity, presence of the syrB Gene, host preference and aggressiveness of Pseudomonas syringae pv. syringae strains from woody and herbaceous host plants. Plant Pathology, 52, 277–286.CrossRefGoogle Scholar
- Sneath, P. H. A., & Sokal, R. P. (1973). Numerical taxonomy: the principles and practice of numerical classification (p. 573). San Francisco: WH Freeman and Company.Google Scholar
- Sorensen, K. N., Kim, K. H., & Takemoto, J. Y. (1998). PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Applied and Environmental Microbiology, 64, 226–230.PubMedGoogle Scholar
- Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution or repetitive DNA– sequences in Eubacteria and application of fingerprinting of bacterial genomes. Nucleic Acids Research, 19, 6823–6831.PubMedCrossRefGoogle Scholar
- Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence- based polymerase chain reaction. Methods in Molecular and cellular Biology, 5, 25–40.Google Scholar
- Vicente, J. G., & Roberts, S. J. (2007). Discrimination of Pseudomonas syringae isolated from sweet and wild cherry using rep-PCR. European Journal of Plant Pathology, 117, 383–392.CrossRefGoogle Scholar
- Weingart, H., & Volksch, B. (1997). Genetic fingerprinting of Pseudomonas syringae pathovars using ERIC-, REP-, and IS50-PCR. Journal of Phytopathology, 145, 339–345.CrossRefGoogle Scholar
- Young, J. M. (1991). Pathogenicity and identification of the lilac pathogen, Pseudomonas syringae pv. syringae van Hall 1902. Annual Applied Biology, 118, 283–298. doi: 10.1111/j.1744-7348.1991.tb05629.x CrossRefGoogle Scholar