European Journal of Plant Pathology

, Volume 135, Issue 2, pp 363–370 | Cite as

Development stage-dependent susceptibility of cocoa fruit to pod rot caused by Phytophthora megakarya

  • P. Takam Soh
  • M. Ndoumbè-Nkeng
  • I. Sache
  • E. P. Ndong Nguema
  • H. Gwet
  • J. Chadœuf


Pod rot causes up to 30 % losses in world cocoa production. In order to predict the risk evolution of disease, it is important to take into consideration the developmental stage of fruits. In fact, it has been shown that the risk of attack by pod rot depends amongst others on the developmental stage of fruits. We proposed here to estimate the susceptibility at different stages. Susceptibility of fruit to disease was investigated at three fruit developmental stages (cherelle, young pod and adult pod); disease severity was assessed in laboratory conditions, on detached, artificially inoculated fruits, while disease incidence was assessed in the field, under natural inoculum pressure. In both assessment fruits at the cherelle stage were the most susceptible whereas the young and adult fruits were equally susceptible. The vertical position of the fruits on the tree did not influence their susceptibility. Estimates of the fruit susceptibility and of the infectious potential were derived from the severity and incidence measurements, using a model assuming that the number of spores on a fruit follows a Poisson distribution with the mean, the density of spores per fruit as the parameter. The estimated parameter values allowed the evaluation of the probability of attack of a fruit by the disease, which could be implemented in a disease warning system.


Infectious potential Model Poisson variable 



IRAD (Institute of Agricultural Research for Development, Cameroon), INRA (National Institute of Agricultural Research, France), ENSP (National Polytechnic Institute, Cameroon) and SCAC (Service for Cooperation and Cultural Action, French Embassy in Cameroon) are acknowledged for the support provided. Sincere thanks are expressed to the staff of the Plant Pathology Laboratory of IRAD who carried out the field and laboratory trials, as well as to Mr. Awah N. Richard who critically reviewed the manuscript.


  1. Acebo-Guerrero, Y., Hernandez-Rodriguez, A., Heydrich-Pérez, M., El Jaziri, M., & Hernandez-Lauzardo, A. N. (2012). Management of black pod rot in cocoa (Theobroma cocoa L.): a review. Fruits, 67, 41–48.CrossRefGoogle Scholar
  2. Akrofi, A. Y., Appiarh, A. A., & Opokua, I. Y. (2003). Management of Phytophthora pod rot disease on cocoa farms in Ghana. Crop Protection, 22, 469–477.CrossRefGoogle Scholar
  3. Ando, K., Hammar, S., & Grumet, R. (2009). Age-related resistance of diverse cucurbit fruit to infection by Phytophthoracapsici. Journal of the American Society for Horticultural Science, 134, 176–182.Google Scholar
  4. Berry, D. (1999). Lutte chimique raisonnée et techniques culturales. In D. Mariau (Ed.), Les maladies des cultures pérennes et tropicales (pp. 282–294). Montpellier: Cirad.Google Scholar
  5. Chillet, M., Hubert, O., & Bellaire, L. D. (2007). Relationship between physiological age, ripening and susceptibility of banana to wound anthracnose. Crop Protection, 26, 1078–1082.CrossRefGoogle Scholar
  6. Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society, B, 34, 187–220.Google Scholar
  7. Dacunha-Castelle, D., & Duflo, M. (1992). Probabilités et Statistiques: problèmes à temps fixe. Paris: Masson.Google Scholar
  8. Deberdt, P., Mfegue, C. V., Tondje, P. R., Bon, M. C., Ducamp, M., & Hurard, C. (2007). Impact of environmental factors, chemical fungicide and biological control on cocoa pod production dynamics and black pod disease (Phytophthoramegakarya) in Cameroon. Biological Control, 44, 149–159.CrossRefGoogle Scholar
  9. Ducamp, M., Nyasse, S., Grivet, L., Thévenin, J. M., Blaha, G., Despréaux, D., & Cilas, C. (2004). Genetic diversity of cocoa tree Phytophthora pathogens. In C. Cilas & D. Despréaux (Eds.), Improvement of cocoa tree resistance to Phytophthora disease (pp. 45–75). Montpellier: CIRAD.Google Scholar
  10. Efomban, M. I. B., Biyesse, D., Nyasse, S., & Eskes, A. B. (2011). Selection for resistance to Phytophthora pod rot of cocoa (Theobroma cocoa L.) in Cameroon: repeatability and reliability of screening tests and field observations. Crop Protection, 30, 105–110.CrossRefGoogle Scholar
  11. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. London: Chapman and Hall.Google Scholar
  12. Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 451–481.CrossRefGoogle Scholar
  13. Martijn ten Hoopen, G., Deberdt, P., Mbenoun, M., & Cilas, C. (2012). Modelling cacao pod growth: implications for disease control. Annals of Applied Biology, 160, 260–272.CrossRefGoogle Scholar
  14. Monfort, A. (1971). Cours de statistique mathématique. Paris: Economica.Google Scholar
  15. Moral, J., Bouhmidi, K., & Trapero, A. (2008). Influence of fruit maturity, cultivar susceptibility, and inoculation method on infection of olive fruit by Colletotrichum acutatum. Plant Disease, 92, 1421–1426.CrossRefGoogle Scholar
  16. Ndoumbe-Nkeng, M. (2002). Incidence des facteurs agro-écologiques sur l’épidémiologie de la pourriture brune des fruits du cacaoyer au Cameroun: contribution à la mise en place d’un modèle d’avertissement agricole. Paris, France: INA-PG, PhD thesis.Google Scholar
  17. Ndoumbe-Nkeng, M., Cilas, C., Nyemb, E., Nyasse, S., Bieysse, D., Flori, A., & Sache, I. (2004). Impact of removing disease pods on cocoa black pod caused by Phythopththoramegakarya and on cocoa production in Cameroon. Crop Protection, 23, 415–424.CrossRefGoogle Scholar
  18. Ndoumbe-Nkeng, M., Efoumbagn, M. I. B., Nyasse, S., Nyemb, E., Sache, I., & Cilas, C. (2009). Relationships between cocoa Phythophthorapod rot disease and climatic variables in Cameroon. Canadian Journal of Plant Pathology, 31, 309–320.CrossRefGoogle Scholar
  19. Nyasse, S., Grivet, L., Risterucci, A. M., Blaha, G., Berry, D., Lanaud, C., & Despréaux, D. (1999). Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD markers. Mycological Research, 103, 1225–1234.CrossRefGoogle Scholar
  20. Opoku, I. Y., Akrofi, A. Y., & Appiah, A. A. (2007). Assessment of sanitation and fungicide application directed at cocoa tree trunks for the control of Phytophthora black pod infections in pods growing in the canopy. European Journal of Plant Pathology, 117, 167–175.CrossRefGoogle Scholar
  21. Peter, M., & Gill, W. (2007). Efficient calculation of p-values in linear-statistic permutation significance tests. Journal of Statistical Computation and Simulation, 77, 55–61.CrossRefGoogle Scholar
  22. R Development Core Team. (2008). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  23. Soberanis, W., Rios, R., Arévalo, E., Zuniga, L., Cabezas, O., & Krauss, U. (1999). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 18, 677–685.CrossRefGoogle Scholar
  24. Sonwa, D. J., Coulibaly, O., Weise, S. F., Adesina, A. A., & Janssens, M. J. J. (2008). Management of cocoa: constraints during acquisition and application of pesticides in the humid forest zones of southern Cameroon. Crop Protection, 27, 1159–1164.CrossRefGoogle Scholar
  25. Soubeyrand, S., Sache, I., Lannou, C., & Chadœuf, J. (2007). A frailty model to assess plant disease spread from individual count data. Journal of Data Science, 5, 67–83.Google Scholar
  26. Xu, X. M., & Robinson, J. D. (2010). Effect of fruit maturity and wetness on the infection of apple fruit by Neonectriagalligena. Plant Pathology, 59, 542–547.CrossRefGoogle Scholar
  27. Xu, X. M., Robinson, J. D., & Berrie, A. M. (2009). Infection of blackcurrant flowers and fruits by Botrytis cinerea in relation to weahter conditions and fruit age. Crop Protection, 28, 407–413.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • P. Takam Soh
    • 1
    • 2
    • 3
  • M. Ndoumbè-Nkeng
    • 1
  • I. Sache
    • 4
  • E. P. Ndong Nguema
    • 2
  • H. Gwet
    • 2
  • J. Chadœuf
    • 3
  1. 1.IRADYaoundéCameroon
  2. 2.ENSPYaoundéCameroon
  3. 3.INRA, Biostatistique et Processus SpatiauxAvignonFrance
  4. 4.INRA, UR Bioger-CPPThiverval-GrignonFrance

Personalised recommendations