European Journal of Plant Pathology

, Volume 136, Issue 1, pp 35–40 | Cite as

Infection of citrus pollen grains by Colletotrichum acutatum

  • João Paulo Rodrigues Marques
  • Lilian Amorim
  • Marcel Bellato Spósito
  • Denis Marin
  • Beatriz Appezzato-da-Glória


Postbloom fruit drop (PFD), an important disease caused by Colletotrichum spp., affects citrus yields in Brazil. PFD is characterised by the presence of necrotic lesions on the petals and stigmas of citrus flowers and by the subsequent abscission of young fruit. PFD epidemics have high disease progress rates, which is unusual for a pathogen that produces acervuli and is dispersed by rain. It is possible that other dispersal agents, such as insects and pollen, are involved in the spread of this disease. The objective of this work was to test whether citrus pollen grains can be colonised by Colletotrichum acutatum. Studies using light and electron microscopy showed that the pollen of Citrus sinensis can be infected by C. acutatum. This pathogen can penetrate and colonise citrus pollen grains 24 h after inoculation with the pathogen. The germ tube of conidia either penetrates the pollen sporodermis directly or passes through pollen germ pores. A single hypha can colonise more than one pollen grain. On the surface of the stigma, conidium formation can be observed. This study shows that Citrus sinensis pollen may, in fact, play a role in the spread of C. acutatum in citrus orchards.


Citrus sinensis Fungal disease Postbloom fruit drop 



This project was supported by FAPESP (São Paulo Council for Research) (Proc: 2008/54176-4; 2009/00425-6) and Fundo de Defesa da Citricultura, FUNDECITRUS, Araraquara, SP, Brazil.


  1. Agostini, J. P., Gottwald, T. R., & Timmer, L. W. (1993). Temporal and spatial dynamics of postbloom fruit drop of citrus in Florida. Phytopathology, 83, 485–490.CrossRefGoogle Scholar
  2. Agrios, G. N. (2008). Plant pathology. San Diego: Academic.Google Scholar
  3. Card, S. D., Pearson, M. N., & Clover, G. R. G. (2007). Plant pathogens transmitted by pollen. Australasian Plant Pathology, 36, 455–461.CrossRefGoogle Scholar
  4. Chou, C. M., & Preece, T. F. (1968). The effect of pollen grains on infections caused by Botrytis cinerea Fr. Annals Applied Biology, 62, 11–22.CrossRefGoogle Scholar
  5. Denham, T. G., & Waller, J. M. (1981). Some epidemiological aspects of post-bloom fruit drop disease (Colletotrichum gloeosporioides) in citrus. Annals of Applied Biology, 98, 65–77.CrossRefGoogle Scholar
  6. Feichtenberger, E., Bassanezi, R. B., Sposito, M. B., & Belasque, J., Jr. (2005). Doenças dos Citros (Citrus spp.). In H. Kimati, L. Amorim, J. A. M. Rezende, A. Bergamin Filho, & L. E. A. Camargo (Eds.), Manual de Fitopatologia: Doenças das Plantas Cultivadas (pp. 239–269). São Paulo: Editora Agronômica Ceres Ltda.Google Scholar
  7. Horridge, G. A., & Tamm, S. L. (1969). Critical point drying for scanning electron microscopy study of ciliar motion. Science, 13, 817–818.CrossRefGoogle Scholar
  8. Huang, H. C., & Kokko, E. G. (1985). Infection of alfafa pollen by Verticillium albo-atrum. Phytopathology, 75, 859–865.CrossRefGoogle Scholar
  9. Huang, H. C., Richards, K. W., & Kokko, E. G. (1986). Role of leafcutter bee in dissemination of Verticillium albo-atrum in alfafa. Phytopathology, 76, 75–79.CrossRefGoogle Scholar
  10. Huang, H. C., Kokko, E. G., & Erickson, R. S. (1997). Infection of alfalfa pollen by Sclerotinia sclerotiorum. Phytoparasitica, 25, 17–24.CrossRefGoogle Scholar
  11. Huang, H. C., Kokko, E. G., Erickson, R. S., & Hynes, R. K. (1998). Infection of canola pollen by Sclerotinia sclerotiorum. Plant Pathology Bulletin, 7, 71–77.Google Scholar
  12. Huang-Chang, H. C., Kokko, E. G., & When, H. J. (2003). Infection of alfafa (Medicago sativa L.) pollen by mycoparasitic fungi Coniothyrium minitana Campell and Gliocladium catenulatum Gilmn and Abbott. Revista Mexicana de Fitopatologia, 21, 117–122.Google Scholar
  13. Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, 27, 137–138.Google Scholar
  14. Knox, R. B., & Heslop-Harrison, J. (1970). Pollen-wall proteins: localization and enzymic activity. Journal of Cell Science, 6, 1–27.PubMedGoogle Scholar
  15. Krause, D. R., Wood, C. J., & Maclean, D. J. (1991). Glucoamylase (exo-1,4-α-d-glucan-glucanohydrolase, EC is the major starch-degrading enzyme secreted by the phytopathogenic fungus Colletotrichum gloeosporioides. Journal of General Microbiology, 137, 2463–2468.CrossRefGoogle Scholar
  16. Lima, W. G., Spósito, M. B., Amorim, L., Gonçalves, F. P., & De Filho, P. A. M. (2011). Colletotrichum gloeosporioides, a new causal agent of citrus post-bloom fruit drop. European Journal of Plant Pathology, 131, 157–165.CrossRefGoogle Scholar
  17. Lin, Y. J., Stover, E., Sonoda, R., & Rosskopf, E. (2001). Stigma and style necrosis is associated with postbloom fruit drop disease in citrus following artificial inoculation. Hortscience, 36, 1138.Google Scholar
  18. Ma, P., Huang, H. C., Kokko, E. G., & Tang, W. H. (2000). Infection of cotton pollen by Verticillium dahlia. Plant Pathology Bulletin, 9, 93–98.Google Scholar
  19. Malerbo, D. T. S., Nogueira-Couto, R. H., & Couto, L. A. (2004). Honey bee attractants and pollination in sweet orange, Citrus sinensis (L.) Osbeck, var. PERA-RIO. Journal of Venomous Animals and Toxins including Tropical Diseases, 20, 144–153.Google Scholar
  20. Olivier, R. L. (1978). Retiarius gen. nov.: Phyllosphere fungi which capture wind-borne pollen grains. Transactions of the British Mycological Society, 71, 193–201.CrossRefGoogle Scholar
  21. Parberry, D. G., & Blakeman, J. P. (1978). Effect of substances associated with leaf surfaces on appressorium formation by Colletotrichum acutatum. Transactions of the British Mycological Society, 70, 7–19.CrossRefGoogle Scholar
  22. Peña, J. E., & Duncan, R. (1989). Role of arthropods in the transmission of post bloom fruit drop. Proceedings of Florida State Horticultural Society, 102, 249–251.Google Scholar
  23. Peres, N. A., Timmer, L. W., Adaskaveg, J. E., & Correll, J. C. (2005). Lifestyles of Colletotrichum acutatum. Plant Disease, 89, 784–796.CrossRefGoogle Scholar
  24. Podila, G. K., Rogers, L. M., & Kolattukudy, P. E. (1993). Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiology, 103, 267–272.PubMedGoogle Scholar
  25. Sakai, W. S. (1973). Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technology, 48, 247–249.PubMedGoogle Scholar
  26. Shaw, D. E. (1999). Bees and fungi with special reference to certain plant pathogens. Australasian Plant Pathology, 28, 269–282.CrossRefGoogle Scholar
  27. Stelfox, D., Williams, J. R., Soehngen, U., & Topping, R. C. (1978). Transport of Sclerotinia sclerotiorum ascospores in rapeseed pollen in Alberta. Plant Disease Reporter, 62, 576–579.Google Scholar
  28. Strasburger, E. (1913). Handbook of practical botany. London: George Allen and Company Ltda.Google Scholar
  29. Sutton, D. C., & Deverall, B. J. (1983). Studies on infection of bean (Phaseolus vulgaris) and soybean (Glycine max) by ascospores of Sclerotinia sclerotiorum. Plant Pathology, 32, 251–261.CrossRefGoogle Scholar
  30. Timmer, L. W. (1999). Diseases of fruit and foliage. In L. W. Timmer & L. W. Duncan (Eds.), Citrus health management (pp. 107–115). St. Paul: APS Press.Google Scholar
  31. Yamakawa, T. (1984). The effect of pollen on the infection of fruit vegetables with conidia of Botrytis cinerea. Proceedings of Kansas Plant Protection Society, 26, 1–8.Google Scholar

Copyright information

© KNPV 2013

Authors and Affiliations

  • João Paulo Rodrigues Marques
    • 1
  • Lilian Amorim
    • 1
  • Marcel Bellato Spósito
    • 1
  • Denis Marin
    • 2
  • Beatriz Appezzato-da-Glória
    • 1
  1. 1.Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  2. 2.Fundo de Defesa da Citricultura, FUNDECITRUSAraraquaraBrazil

Personalised recommendations