European Journal of Plant Pathology

, Volume 134, Issue 4, pp 811–820 | Cite as

Screening potential bacterial biocontrol agents towards Phytophthora capsici in pepper

  • Ming-Ming Yang
  • Liu-Ping Xu
  • Qing-Yun Xue
  • Jing-Hui Yang
  • Quan Xu
  • Hong-Xia Liu
  • Jian-Hua Guo


A total of 1,487 bacterial isolates were obtained from the rhizosphere, phyllosphere, endorhiza and endosphere of field-grown pepper. In a dual assay, 232 isolates displayed the antagonistic activity towards Phytophthora capsici L.; 36.6 % and 39.2 % of them were obtained from the rhizosphere and phyllosphere, respectively. 40 of the 232 antagonistic isolates producing inhibition zones of at least 5 mm in diameter were assessed for production of siderophores and chitinase, cellulose, and protease activity. These 40 isolates fell into 15 groups according to 90 % similarity of the banding patterns obtained by amplified ribosomal DNA restriction analysis (ARDRA). Seventeen isolates spanning the 15 groups were evaluated in greenhouse tests for their ability to control Phytophthora blight of pepper. Biocontrol efficacy ranged from 0.7 % to 92.3 %, with three isolates (B1301, R98, and PX35) exhibiting maximum ability to reduce the disease severity (83.5 %, 92.3 % and 83.5 %, respectively). Based on 16S rDNA sequencing, these isolates were identified as Bacillus cereus (B1301), Chryseobacterium sp (R98) and Bacillus cereus (PX35). This is the first report that Chryseobacterium sp. (R98) can function as a biocontrol agent of Phytophthora blight.


Antagonist Biocontrol Pepper Phytophthora capsici Phytophora blight 



This research was supported by Program for New Century Excellent Talents in University (NCET-06-0492), Chinese 863 high-tech Program (2006AA10A211) and Chinese Natural Science Foundation and Science Foundation for Youths (No. 30800714).


  1. Akinkurolere, R. O., Rao, Q., Wang, X. Q., & Zhang, H. Y. (2009). Effect of Bacillus thuringiensis on Habrobraconhebetor during combined biological control of Plodia interpunctella. Insect Science, 16, 409–416.CrossRefGoogle Scholar
  2. Anandaraj, M., & Sarma, V. R. (1995). Disease of black pepper (Piper nigrum) and their management. Journal of Spices and Aromatic Crops, 4, 17–23.Google Scholar
  3. Baker, C. J., Stavely, J. R., Thomas, C. A., Sasser, M., & Macfall, J. S. (1983). Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology, 73, 1148–1152.CrossRefGoogle Scholar
  4. Baker, C. J., Stavely, J. R., & Mock, N. (1985). Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69, 770–772.CrossRefGoogle Scholar
  5. Berg, G., Krechel, A., & Ditz, M. (2005). Endophytic and ectophytic potato-ssociated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215–229.Google Scholar
  6. Chernin, L., & Chet, I. (2002). Microbial enzymes in biocontrol of plant pathogens and pests. In: R. Burns, R. Dick (Eds.), (pp. 171–225). NY: Marcel Dekker Inc.Google Scholar
  7. de Souza, J. T., Boer, M., Waard, P., & Raaijmakers, J. M. (2003). Biochemical genetic and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied and Environmental Microbiology, 69, 7161–7172.PubMedCrossRefGoogle Scholar
  8. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  9. Giraffa, G., Vecchi, P., & Rossetti, L. (1998). Note: identification of Lactobacillus delbrueckii subspecies bulgaricus and subspecies lactis dairy isolates by amplified rDNA restriction analysis. Journal of Applied Microbiology, 85, 918–924.PubMedCrossRefGoogle Scholar
  10. Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X., et al. (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 29, 66–72.CrossRefGoogle Scholar
  11. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.PubMedCrossRefGoogle Scholar
  12. Hausbeck, M. K., & Lamour, K. H. (2004). Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease, 88, 1292–1303.CrossRefGoogle Scholar
  13. Heungens, K., & Parke, J. L. (2001). Postinfection biological control of oomycete pathogens of pea by Burkholderia cepacia AMMDR1. Phytopathology, 91, 383–391.PubMedCrossRefGoogle Scholar
  14. Howell, C. R., & Stipanovic, R. D. (1979). Control of Rhizoctonia solani oncotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology, 69, 480–482.CrossRefGoogle Scholar
  15. Kim, H. S., Sang, M. K., Jeunb, Y. C., Hwang, B. K., & Kim, K. D. (2008). Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Protection, 27, 436–443.CrossRefGoogle Scholar
  16. Knudsen, I. M. B., & Hockenhull, J. (1997). Selection of biological control agents for controlling soil and seed-borne diseases in the field. European Journal of Plant Pathology, 103, 775–784.CrossRefGoogle Scholar
  17. Kui, J. L., Seralathan, K. K., & Han, S. S. (2008). Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World Journal of Microbiology and Biotechnology, 24, 1139–1145.CrossRefGoogle Scholar
  18. Kun, X., Linda, L. K., & Deborah, A. S. (2002). Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biological Control, 23, 285–295.CrossRefGoogle Scholar
  19. Mao, W., Lewis, J. A., Lumsden, R. D., & Hebbar, K. P. (1998). Biocontrol of selected soilborne diseases of tomato and pepper plants. Crop Protection, 17, 535–542.CrossRefGoogle Scholar
  20. Ozgonena, H., & Erkilic, A. (2007). Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protection, 26, 1682–1688.CrossRefGoogle Scholar
  21. Pavloua, G. C., & Vakalounakis, D. J. (2005). Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Protection, 24, 135–140.CrossRefGoogle Scholar
  22. Rajkumar, M., Lee, W. H., & Lee, K. J. (2005). Screening of bacterial antagonists for biological control of Phytophthora blight of pepper. Journal of Basic Microbiology, 45, 55–63.PubMedCrossRefGoogle Scholar
  23. Ross, I. L., Alami, Y., Harvey, P. R., Achouak, W., & Ryder, M. H. (2000). Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66, 1609–1616.PubMedCrossRefGoogle Scholar
  24. Saligkarias, I. D., Gravanis, F. T., & Epton, H. A. S. (2002). Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. A study on mode of action. Biological Control, 25, 151–161.CrossRefGoogle Scholar
  25. Sawanth, I. S., Sawanth, S. D., & Nayana, K. A. (1995). Biological control of Phytophthora root rot of coorg mandarin (Citrus reticulata) by Trichoderma species grown on coffee waste. Indian Journal of Agricultural Sciences, 65, 842–846.Google Scholar
  26. Shin, S. H., Lim, Y., Lee, S. E., Yang, N. W., & Rhee, J. H. (2001). CAS agar diffusion assay for the measurement of siderophores in biological fluids. Journal of Microbiological Methods, 44, 89–95.PubMedCrossRefGoogle Scholar
  27. Tag, E. L., Lim, S. K., Nam, D. H., Khang, Y. H., & Kim, S. D. (2003). Pyoverdin (2112) of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red pepper blight causing fungus. Journal of Microbiology and Biotechnology, 13, 415–421.Google Scholar
  28. Tjamos, E. C., Tsitsigiannis, T. I., Tjamos, S. E., Antoniou, P., & Katinakis, P. (2004). Selection and screening of endorhizosphere bacteria from solarised soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. European Journal of Plant Pathology, 110, 35–44.CrossRefGoogle Scholar
  29. Weller, D. M. (1988). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379–407.CrossRefGoogle Scholar
  30. Whipps, J. M., & Van, J. D. (1997). Ecological considerations involved in commercial development of biological control agents for soil-borne diseases In: Modern soil microbiology (pp. 525–545). New York: Marcel Dekker, Inc.Google Scholar
  31. Yang, J. H., Liu, H. X., Zhu, G. M., Pan, Y. L., Xu, L. P., & Guo, J. H. (2008). Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. Journal of Applied Microbiology, 104, 91–104.PubMedGoogle Scholar
  32. Yang, M. M., Mavrodi, D. V., Mavrodi, O. V., Bonsall, R. F., Parejko, J. A., Paulitz, T. C., et al. (2011). Phytopathology, 101(12), 1481–1491.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Ming-Ming Yang
    • 1
  • Liu-Ping Xu
    • 1
    • 2
  • Qing-Yun Xue
    • 1
  • Jing-Hui Yang
    • 1
    • 3
  • Quan Xu
    • 1
  • Hong-Xia Liu
    • 1
  • Jian-Hua Guo
    • 1
  1. 1.Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of AgricultureNanjingChina
  2. 2.Wuxi Institute of Termite ControlWuxiChina
  3. 3.Zhenjiang Institute of Agricultural ScienceZhenjiangChina

Personalised recommendations