Advertisement

European Journal of Plant Pathology

, Volume 134, Issue 3, pp 497–507 | Cite as

Development of molecular markers based on retrotransposons for the analysis of genetic variability in Moniliophthora perniciosa

  • Mateus Ferreira Santana
  • Elza Fernandes de Araújo
  • Jorge Teodoro de Souza
  • Eduardo Seiti Gomide Mizubuti
  • Marisa Vieira de Queiroz
Article

Abstract

Moniliophthora perniciosa is a fungus that causes witches’ broom disease (WBD) in the cacao tree (Theobroma cacao). The M. perniciosa genome contains different transposable elements; this prompted an evaluation of the use of its retrotransposons as molecular markers for population studies. The inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) techniques were used to study the variability of 70 M. perniciosa isolates from different geographic origins and biotypes. A total of 43 loci was amplified. Cluster analysis of different geographical regions of C biotype revealed two large groups in the state of Bahia, Brazil. Techniques using retrotransposon-based molecular markers showed advantages over previously used molecular techniques for the study of genetic variability in M. perniciosa.

Keywords

Retrotransposon Moniliophthora perniciosa Genetic variability IRAP REMAP 

Notes

Acknowledgments

We are grateful to Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

References

  1. Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1, 101–102.CrossRefGoogle Scholar
  2. Aime, M. C., & Phillips-Mora, W. (2005). The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycology, 97, 1012–1022.CrossRefGoogle Scholar
  3. Andebrhan, T., Figueira, A., Yamada, M. M., Cascardo, J., & Furtek, D. B. (1999). Molecular fingerprinting suggests two primary outbreaks of Witches’ broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brazil. European Journal of Plant Pathology, 105, 167–175.CrossRefGoogle Scholar
  4. Anderbrhan, T., & Furtek, D. B. (1994). Random amplified polymorphism DNA (RAPD) analysis of Crinipellis perniciosa isolates from different hosts. Plant Pathology, 43, 1020–1027.CrossRefGoogle Scholar
  5. Bastos, C. N., & Anderbrahn, T. (1986). Urucum (Bixa orellana): nova espécie da Vassoura-de-Bruxa (Crinipellis perniciosa) do cacaueiro. Fitopatologia Brasileira, 13, 963–965.Google Scholar
  6. Bouvet, G. F., Jacobi, V., Plourde, K. V., & Bernier, L. (2008). Stress-induced mobility of OPHO1 and OPHO2, DNA transposons of the Dutch elm disease fungi. Fungal Genetics and Biology, 45, 565–578.PubMedCrossRefGoogle Scholar
  7. Chadha, S., & Gopalakrishna, T. (2005). Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome, 48, 943–945.PubMedCrossRefGoogle Scholar
  8. Chang, R.-Y., O’donoughue, L. S., & Bureau, T. E. (2001). Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theoretical and Applied Genetics, 102, 773–781.CrossRefGoogle Scholar
  9. Crouch, J. A., Glasheen, B. M., Giunta, M. A., Clarke, B. B., & Hillman, B. I. (2008). The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: reconciling sex, recombination and homoplasy in an “asexual” pathogen. Fungal Genetics and Biology, 45, 190–206.PubMedCrossRefGoogle Scholar
  10. Daboussi, M. J., & Capy, P. (2003). Transposable elements in filamentous fungi. Annual Review of Microbiology, 57, 275–299.PubMedCrossRefGoogle Scholar
  11. De Arruda, M. C. C., Miller, R. N. G., Ferreira, M. A. S. V., & Felipe, M. S. S. (2003). Comparison of Crinipellis perniciosa isolates from Brazil by ERIC repetitive element sequence-based PCR genome fingerprinting. Plant Pathology, 52, 236–244.CrossRefGoogle Scholar
  12. Excoffier, L., Laval, G., & Schneider, S. (2006). Arlequin ver 3.01. An integrated software package for population genetics data analysis. Computational and molecular population genetics Lab (CMPG). Institute of Zoology. University of Berne.Google Scholar
  13. Flavell, A. J., Knox, M. R., Pearce, S. R., & Ellis, T. H. N. (1998). Retrotransposon-based insertion polymorphism (RBIP) for high throughput marker analysis. The Plant Journal, 16, 643–650.PubMedCrossRefGoogle Scholar
  14. Gramacho, K. P., Risterucci, A. M., Lanaud, C., Lima, L. S., & Lopes, U. V. (2007). Characterization of microsatellites in the fungal plant pathogen Crinipellis perniciosa. Molecular Ecology Notes, 7, 153–155.CrossRefGoogle Scholar
  15. Griffith, G. W., & Hedger, J. N. (1994a). The breeding biology of biotypes of the witches’ broom pathogen of cocoa, Crinipellis perniciosa. Heredity, 71, 278–289.CrossRefGoogle Scholar
  16. Griffith, G. W., & Hedger, J. N. (1994b). Spatial distribution of mycelia of the liana (L-) biotype of the agaric Crinipellis perniciosa (Stahel) Singer in tropical forest. New Phytolologist, 127, 243–259.CrossRefGoogle Scholar
  17. Griffith, G. M., Nicholson, J. N., Nenninger, A., Birch, R. N., & Hedger, J. N. (2003). Witches’ brooms and frosty pods: Two major pathogens of cacao. New Zealand Journal of Botany, 41, 423–435.CrossRefGoogle Scholar
  18. Grzebeleus, D. (2006). Transposon insertion polymorphism as a new source of molecular markers. Journal of Fruit and Ornamental Plant Research, 14, 21–29.Google Scholar
  19. Hansen, C. N., & Heslop-Harrison, J. S. (2004). Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Advances in Botanical Research, 41, 165–193.CrossRefGoogle Scholar
  20. Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427–432.CrossRefGoogle Scholar
  21. Huan-Van, A., Ruzic, L., Maisonhaute, C., & Capy, P. (2005). Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenetic and Genome Research, 110, 426–440.CrossRefGoogle Scholar
  22. Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y., & Mayama, S. (2001). Heat shock, cooper sulfate and oxidative stress active the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Molecular Genetics and Genomics, 266, 318–325.PubMedCrossRefGoogle Scholar
  23. Kalendar, R., & Schulman, A. H. (2006). IRAP and REMAP for retrotransposon-based genotyping and fingerprint. Nature Protocols, 1, 24782484.CrossRefGoogle Scholar
  24. Kalendar, R., Grob, T., Regina, M., Suoniemi, A., & Schulman, A. H. (1999). IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 98, 704–711.CrossRefGoogle Scholar
  25. Kalendar, R., Flavell, A. J., Ellis, T. H. N., Stakste, T., Moisy, C., & Schulman, A. H. (2011). Analysis of plant diversity with retrotransposon-based molecular markers. Heredity, 106, 520–530.PubMedCrossRefGoogle Scholar
  26. Kumar, P., Gupta, V. K., Misra, A. K., Modi, D. R., & Pandey, B. K. (2009). Potential of molecular markers in plant biotechnology. Plant Omics Journal, 2, 141–162.Google Scholar
  27. Maynard-Smith, L., Smith, N. H., O’rourke, M., & Spratt, B. G. (1993). How clonal are bacteria? Proceedings of the National Academy of Sciences, 90, 4384–4388.CrossRefGoogle Scholar
  28. Mondego, J. M. C., Carazzolle, M. F., Costa, G. G. L., Formighieri, E. F., Parizzi, L. P., Rincones, J., et al. (2008). A genome survey of Moniliophthora perniciosa gives new insights into witches’ broom disease of cacao. BMC Genomics, 9, 548.PubMedCrossRefGoogle Scholar
  29. Murata, H., Babasaki, K., Saegusa, T., Takemoto, K., Yamada, A., & Ohta, A. (2008). Traceability of Asian Matsutake, specialty mushrooms produced by the ectomycorrhizal basideomycetes Tricholoma matsutake, on the basis of retroelement-based DNA markers. Applied and Environmental Microbiology, 74, 2023–2031.PubMedCrossRefGoogle Scholar
  30. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA, 70, 3321–3323.CrossRefGoogle Scholar
  31. Neto, A. D., Corrêa, R. X., Monteiro, W. R., Luz, E. D. M. N., Gramacho, K. P., & Lopes, U. V. (2005). Characterization of a cocoa population for mapping of genes of resistance to Witches’ Broom and Phytophthora pod rot. Fitopatolologia Brasileira, 30, 380–386.CrossRefGoogle Scholar
  32. Novikova, O. S., Fet, V., & Blinov, A. G. (2007). Homology-dependent inactivation of LTR retrotransposons in Aspergillus fumigatus and A. nidulans genome. Molecular Biology, 41, 886–893.CrossRefGoogle Scholar
  33. Oliveira, M. L., & Luz, E. D. M. N. (2005). Identificação e manejo das principais doenças do cacaueiro no Brasil. Ilhéus: CEPLAC/CEPEC/SEFIT. 132p.Google Scholar
  34. Pasquali, M., Dematheis, F., Gullino, M. L., & Garibaldi, A. (2007). Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology, 97, 987–996.PubMedCrossRefGoogle Scholar
  35. Pereira, J. F. (2005). Caracterização, distribuição e estudo da atividade de elementos transponíveis em Crinipellis perniciosa, agente causal da vassoura-de-bruxa no cacaueiro (Theobroma cacao). Dissertation, Universidade Federal de Viçosa, BrazilGoogle Scholar
  36. Pereira, J. L., Ram, A., Figueiredo, J. M., & Almeida, L. C. C. (1989). Primeira ocorrência de vassoura-de-bruxa na principal região produtora de cacau do Brasil. Agrotópica, 1, 79–81.Google Scholar
  37. Pereira, J. F., Ignacchiti, M. D. C., Araújo, E. F., Brommonshenkel, S. H., Cascardo, J. C. M., Pereira, G. A. G., et al. (2007). PCR amplification and sequence analyses of reverse transcriptase-like genes in Crinipellis perniciosa isolates. Fitopatologia Brasileira, 32, 373–381.CrossRefGoogle Scholar
  38. Ploetz, R. C., Schnell, R. J., Ting, Z., Zheng, Q., Olano, C. T., Motamayor, J. C., et al. (2005). Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. European Journal of Plant Pathology, 111, 317–326.CrossRefGoogle Scholar
  39. R Development Core Team. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  40. Rincones, J., Meinhardt, L. W., Vidal, B. C., & Pereira, G. A. G. (2003). Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao. Mycological Research, 107, 452–458.PubMedCrossRefGoogle Scholar
  41. Rozen, S. & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology, 132, 365–386.Google Scholar
  42. Silva, J. R. Q., Figueira, A., Pereira, G. A. G., & Albuquerque, P. (2008). Development of novel microsatellites from Moniliophthora perniciosa, causal agent of the witches’ broom disease of Theobroma caçao. Molecular Ecology Resources, 8, 783–785.PubMedCrossRefGoogle Scholar
  43. SUFRAMA—Superintendência da Zona Franca de Manaus, (2003). Potencialidades regionais – Estudo da viabilidade econômica – Cacau- p 34.Google Scholar
  44. Waugh, R., Mclean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B., et al. (1997). Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular Genetics and Genomics, 253, 687–694.Google Scholar
  45. Yeh, F. C., Yang, R., & Boyle, T. (1999). POPGENE. Microsoft window-based freeware for population genetic analysis. Release 1.31. Edmonton: University of Alberta, Canada.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Mateus Ferreira Santana
    • 1
  • Elza Fernandes de Araújo
    • 1
  • Jorge Teodoro de Souza
    • 2
  • Eduardo Seiti Gomide Mizubuti
    • 3
  • Marisa Vieira de Queiroz
    • 1
  1. 1.Departamento de MicrobiologiaInstituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de ViçosaViçosaBrazil
  2. 2.Centro de Ciências Agrárias, Biológicas e AmbientaisUniversidade Federal do Recôncavo da BahiaCruz das AlmasBrazil
  3. 3.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations