European Journal of Plant Pathology

, Volume 133, Issue 4, pp 887–898 | Cite as

Differential induction of pathogenesis-related proteins in banana in response to Mycosphaerella fijiensis infection

  • J. M. Torres
  • H. Calderón
  • E. Rodríguez-Arango
  • J. G. Morales
  • R. Arango


Black leaf streak or “black Sigatoka” is one of the most important diseases affecting bananas and plantains worldwide. Very few studies have been published on the host-pathogen interaction of this pathosystem, particularly at the molecular level. The aim of this work was to analyze, under controlled conditions, the enzyme activity of peroxidase (POX), phenylalanine ammonia lyase (PAL), β-1, 3-glucanase (GLU) and chitinase (CHI) as well as the production of H2O2 in banana plants infected with Mycosphaerella fijiensis. Defence responses were examined and compared in a resistant (Calcutta 4) and a susceptible (Williams) cultivar. Plants were inoculated and tested for enzyme activity at 0, 6, 12, 18, 24, 48 and 72 h after infection (HAI) and 6, 9, 12, 15 and 18 days after inoculation (DAI). A rapid induction of PAL, POX and GLU was observed in the resistant cultivar at 6–18 HAI as well as H2O2 production at 72 HAI. In contrast, in the susceptible cultivar, induction of these enzymes was only observed from 6 DAI. These results suggest that the first 72 HAI are important in determining the response of the host to the disease. Further studies characterizing banana responses to M. fijiensis at the early stages of the infection are necessary in order to better understand this host-pathogen interaction.


Black leaf streak Black Sigatoka Banana PR proteins 



This work was supported by the Instituto para el desarrollo de la Ciencia y la Tecnología “Francisco José de Caldas” (Colciencias), Colombia, grants No. 2213-12-17825 and 2213-452-21253; Corporación para Investigaciones Biológicas (CIB) and Dirección de Investigaciones Medellín (DIME) of the Universidad Nacional de Colombia sede Medellín. The authors of this article wish to thank Professor Jairo Castaño from Universidad de Caldas for the Calcutta 4 plantlets used in this work.


  1. Adhikari, T. B., Balaji, B., Breeden, J., & Goodwin, S. B. (2007). Resistance of wheat to Mycosphaerella graminicola involves early and late peaks of gene expression. Physiological and Molecular Plant Pathology, 71, 55–68.CrossRefGoogle Scholar
  2. Aguilar, E. A., Turner, D. W., & Sivasithamparam, K. (2000). Proposed mechanisms on how Cavendish bananas are predisposed to Fusarium wilt during hypoxia. InfoMusa, 9, 9–13.Google Scholar
  3. Beveraggi, A., Mourichon, X., & Salle, G. (1995). Étude comparée des premier étapes de l’infection chez des bananiers sensibles et résistants infectés par le Cercospora fijiensis (Mycosphaerella fijiensis) agent responsable de la maladie des raies noires. Canadian Journal of Botany, 73, 1328–1337.CrossRefGoogle Scholar
  4. Beveraggi, A., Mourichon, X., & Salle, G. (1993). Study of host-parasite interaction in susceptible and resistant bananas inoculated with Cercospora fijiensis, pathogen of black leaf streak disease. Paper presented at the International. Symposium. on Genetic Improvement of Bananas for Resistance to Diseases and Pests (pp. 171–192). CIRAD, Montpellier, France.Google Scholar
  5. Boller, T., Gehri, A., Mauch, F., & Vögeli, U. (1983). Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 157, 22–31.CrossRefGoogle Scholar
  6. Boller, T. (1985). Induction of hydrolases as a defense reaction against pathogens. In J. L. Key & T. Kosuge (Eds.), Cellular and Molecular Biology of Plant Stress (pp. 247–262). New York: AR Liss.Google Scholar
  7. Boller, T. & Meins, F., Jr. (Eds.) (1992). Genes Involved in Plant Defense. Wien: Springer-Verlag.Google Scholar
  8. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefGoogle Scholar
  9. Castañeda, D.A., Diaz, T.J. & Arango, R. (1998). Evaluation of the antifungal activity of tobacco class I chitinase and β-1,3 glucanase against M. fijiensis and their interaction with the chemical fungicide tridemorph. presented at the III Encuentro Latinoamericano de Biotecnología Vegetal (pp. 390–391). Habana-Cuba.Google Scholar
  10. Carlier, J., Zapater, M. F., Lapeyre, F., Jones, D. R., & Mourichon, X. (2000). Septoria leaf spot of banana: A newly discovered disease caused by Mycosphaerella eumusae (anamorph Septoria eumusae). Phytopathology, 90, 884–890.PubMedCrossRefGoogle Scholar
  11. Cavalcante, M., Escoute, J., Madeira, J. P., Romero, R. E., Nicole, M. R., Oliveira, L. C., Hamelin, C., Lartaud, M., & Verdeil, J. L. (2011). Reactive Oxygen Species and Cellular Interactions Between Mycosphaerella fijiensis and Banana. Tropical Plant Biology, 4, 134–143.CrossRefGoogle Scholar
  12. Craenen, K., & Ortiz, R. (1996). Effect of the black Sigatoka resistance locus bs1 and ploidy level on fruit and bunch traits of plantain-banana hybrids. Euphytica, 87, 97–101.CrossRefGoogle Scholar
  13. Cruz-Cruz, C. A., García-Sosa, K., Escalante-Erosa, F., & Peña-Rodríguez, L. M. (2009). Production of hydrophilic phytotoxins by Mycosphaerella fijiensis. Journal of General Plant Pathology, 75, 191–195.CrossRefGoogle Scholar
  14. Cruz-Cruz, C. A., Ramírez-Tec, G., García-Sosa, K., Escalante-Erosa, F., Hill, L., Osbourn, A. E., & Peña-Rodríguez, L. M. (2009). Phytoanticipins from banana (Musa acuminata cv. Grande Naine) plants, with antifungal activity against Mycosphaerella fijiensis, the causal agent of black Sigatoka. European Journal of Plant Pathology, 126, 459–463.CrossRefGoogle Scholar
  15. De Ascensao, A. R., & Dubery, I. A. (2000). Panama disease: cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense race four. Phytopathology, 90, 1173–1180.PubMedCrossRefGoogle Scholar
  16. Flott, B. E., Moerschbacher, B., & Reisener, H. (1989). Peroxidase isozyme patterns of resistant and susceptible wheat leaves following stem and rust infection. New Phytologist, 111, 413–421.CrossRefGoogle Scholar
  17. Fouré, E. (1994). Leaf spot diseases of banana and plantain caused by Mycosphaerella musicola and M fijiensis. In E. Jones (Ed.), The Improvement and Testing of Musa: a Global Partnership (pp. 37–46). Montpellier: INIBAP.Google Scholar
  18. Hidalgo, W., Duque, L., Saez, J., Arango, R., Gil, J., Rojano, B., Schneider, B., & Otálvaro, F. (2009). Structure-activity relationship in the interaction of substituted perinaphthenones with Mycosphaerella fijiensis. Journal of Agricultural and Food Chemistry, 57, 7417–7421.PubMedCrossRefGoogle Scholar
  19. Kristensen, B. K., Bloch, H., & Rasmussen, S. K. (1999). Barley coleoptile peroxidases. Purification, molecular cloning and induction by pathogens. Plant Physiology, 120, 501–512.PubMedCrossRefGoogle Scholar
  20. Malolepsza, U. (2006). Induction of disease resistance by acibenzolar-S-methyl and o-hydroxyethylorutin against Botrytis cinerea in tomato plants. Crop Protection, 25, 956–962.CrossRefGoogle Scholar
  21. Milosevic, N., & Slusarenko, A. J. (1996). Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiological Plant Pathology, 49, 143–158.CrossRefGoogle Scholar
  22. Mobambo, K. N., Pasberg-Gauhl, C., Gauhl, F., & Zuofa, K. (1997). Host response to black Sigatoka in Musa germplasm of different ages under natural inoculation conditions. Crop Protection, 16, 359–363.CrossRefGoogle Scholar
  23. Orjeda, G., Escalant, J. V., & Moore, N. (2000). The International Musa Testing Programme (IMTP) Phase II - Synthesis of final results. In G. Orjeda (Ed.), Evaluating bananas: a global partnership: results of IMTP phase II (pp. 7–75). Montpellier: INIBAP.Google Scholar
  24. Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 6553–6557.PubMedCrossRefGoogle Scholar
  25. Otálvaro, F., Nanclares, J., Vásquez, L. E., Quiñones, W., Echeverri, F., Arango, R., & Schneider, B. (2007). Phenalenone-type compounds from Musa acuminata var. “Yangambi km 5” (AAA) and their activity against Mycosphaerella fijiensis. Journal of Natural Products, 70, 887–890.PubMedCrossRefGoogle Scholar
  26. Ploetz, R. (2004). The most important disease of a most important fruit. APSnet Education Center, 1, 1999. doi: 10.1094/PHI-I-2001-0126-01.Google Scholar
  27. Ramanathan, A., Vidhiyasekaran, P., & Samiyappan, R. (2001). Two pathogenesis-related peroxidases in greengram (Vigna radiate (L.) Wilczek) leaves and cultured cells induced by Macrophomina phaseolina (Tassi) Goid and its elicitors. Microbiology Research, 156, 139–144.CrossRefGoogle Scholar
  28. Sallé, G., Pichard, V., & Mourichon, X. (1989). Cytological study of the interaction between Mycosphaerella fijiensis Morelet and three cultivars of Musa presenting different levels of resistance. (Paper presented at the International Workshop on Sigatoka Leaf Spot Diseases of Bananas, San José, Costa Rica).Google Scholar
  29. Sepúlveda, L., Vásquez, L., Paniagua, C., Echeverry, D., Hernández, C., Rodríguez, E., Restrepo, L., & Arango, R. (2009). The presence and spectrum of light influences the in vitro conidia production of Mycosphaerella fijiensis causal agent of black Sigatoka. Australasian Plant Pathology, 38, 514–517.CrossRefGoogle Scholar
  30. Shetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121, 267–280.CrossRefGoogle Scholar
  31. Shetty, N. P., Kristensen, B. K., Newman, M.-A., Møller, K., Gregersen, P. L., & Jørgensen, H. J. L. (2003). Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 62, 333–346.CrossRefGoogle Scholar
  32. Shetty, N. P., Mehrabi, R., Lütken, H., Haldrup, A., Kema, G. H. J., Collinge, D. B., & Jørgensen, H. J. L. (2007). Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytologist, 174, 637–647.PubMedCrossRefGoogle Scholar
  33. Stierle, A. A., Upadhyay, R., Hershenhorn, J., Strobel, G. A., & Molina, G. (1991). The phytotoxins of Mycosphaerella fijiensis, the causative agent of black Sigatoka disease of bananas and plantains. Experientia, 47, 853–859.CrossRefGoogle Scholar
  34. Stover, R. H., & Simmonds, N. W. (1987). Bananas Tropical agriculture series Burnt Mill. Harlow: Longman Scientific & Technical.Google Scholar
  35. Subramaniam, S., Maziah, M., Sariah, M., Puad, M. P., & Xavier, R. (2006). Bioassay method for testing Fusarium wilt disease tolerance in transgenic banana. Scientia Horticulturae, 108, 378–389.CrossRefGoogle Scholar
  36. Thangavelu, R., Palaniswami, A., Doraiswamy, S., & Velazhahan, R. (2003). The effect of Pseudomonas fluorescens and Fusarium oxysporum f.sp. cubense on induction of defense enzymes and phenolics in banana. Biologia Plantarum, 46, 107–112.CrossRefGoogle Scholar
  37. Zhang, J., & Kirkham, M. B. (1994). Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant & Cell Physiology, 35, 785–791.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • J. M. Torres
    • 1
  • H. Calderón
    • 1
  • E. Rodríguez-Arango
    • 1
  • J. G. Morales
    • 3
  • R. Arango
    • 1
    • 2
  1. 1.Plant Biotechnology Unit UNALMED-CIB Corporación Para Investigaciones Biológicas – CIBMedellínColombia
  2. 2.Escuela de BiocienciasUniversidad Nacional de ColombiaMedellínColombia
  3. 3.Departamento de Ciencias AgronómicasUniversidad Nacional de Colombia sedeMedellínColombia

Personalised recommendations