Skip to main content
Log in

Cauliflower stunt associated with a phytoplasma of subgroup 16SrIII-J and the spatial pattern of disease

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Since 2000, a disease has occurred with high levels of incidence in crops of cauliflower grown in the green belt area of the city of São Paulo, Brazil. The symptoms are characterized by stunting, malformation of the inflorescence, reddening leaves, and vascular necrosis, suggesting infection by phytoplasma. These symptoms are similar to those described in Brassicas species affected by the aster yellows (16SrI) group of phytoplasma. In the present study, a phytoplasma from the 16SrIII-J subgroup was identified in cauliflower plants based on actual and virtual RFLP patterns and phylogenetic analysis, and was distinct from the phytoplasmas frequently associated with aster yellows disease in Brassicas. Pathogenicity assays using dodder confirmed that the identified phytoplasma is the agent of the observed disease, which is here designated as cauliflower stunt. Consequently, this species of Brassica may be recognized as a new host for subgroup 16SrIII-J, which has frequently been found in diverse species cultivated in Brazil. The spatial pattern of diseased plants was determined in ten cauliflower plots of 300 to 728 plants each. All plants in these plots were evaluated by visual assessments, assigned as diseased or healthy and mapped. The dispersion index and Taylor’s power law were determined for various quadrat sizes and the results showed that the diseased plants were distributed in a random pattern in fields with a low disease incidence and in an aggregated pattern in fields with a disease incidence greater than 25 %. According to an isopath area analysis, diseased plants were predominantly present in the field borders, suggesting that the pathogen is possibly introduced by vector(s) from the external area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amaral-Mello, A. P. O., Bedendo, I. P., & Camargo, L. E. A. (2006). Sequence heterogeneity in the 16S rDNA of tomato big bud phytoplasma belonging to group 16SrIII. Journal of Phytopathology, 154, 245–249.

    Article  Google Scholar 

  • Amaral-Mello, A. P. O., Eckstein, B., Flores, D., Kreyci, P. F., & Bedendo, I. P. (2011). Identification by computer-simulated RFLP of phytoplasmas associated with eggplant giant calix representative of two subgroups, a lineage of 16SrIII-J and the new subgroup 16SrIII-U. International Journal of Systematic and Evolutionary Microbiology, 61, 1454–1461.

    Article  PubMed  Google Scholar 

  • Beanland, L., Madden, L. V., Hoy, C. W., Miller, S. A., & Nault, L. R. (2005). Temporal distribution of aster leafhopper sex ratios and spatial pattern of aster yellows phytoplasma disease in lettuce. Annals of the Entomological Society of America, 98, 756–762.

    Article  Google Scholar 

  • Bertaccini, A., & Duduka, B. (2009). Phytoplasma and diseases: a review of recent research. Phytopathology Mediterranea, 48, 355–378.

    CAS  Google Scholar 

  • Bertaccini, A., Pisi, A., & Marani, F. (1983). Virescenza e fillodia del cavolfiore e del broccolo. Informatore Fitopatologico, 33, 57–60.

    Google Scholar 

  • Bertaccini, A., Varáckivá, Z., Vibio, M., Fránová, J., Navratil, M., Spak, J., & Nebesárová, J. (1998). Comparison of phytoplasmas infecting winter oilseed rape in the Czech Republic with italian Brassica phytoplasmas and their relationship to the aster yellows group. Plant Pathology, 47, 317–324.

    Article  Google Scholar 

  • Bonnot, F., Franqueville, H., & Lourenço, E. (2010). Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique. Phytopathology, 100, 300–312.

    Article  PubMed  CAS  Google Scholar 

  • Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. Journal of Microbiology Methods, 14, 53–61.

    Article  CAS  Google Scholar 

  • Duarte, V., Silva, E. G., Haas, I. C. R., Bedendo, I. P., & Kitajima, E. W. (2009). First report of a group 16SrIII-B phytoplasma associated with decline of Chine-tree in Brazil. Plant Disease, 93, 666.

    Article  Google Scholar 

  • Duduk, B., Bulajic, A., Duduk, N., Calari, A., Paltrinieri, S., Krstic, B., & Bertaccini, A. (2007). Identification of phytoplasmas belonging to aster yellows ribossomal group in vegetables in Serbia. Bulletin of Insectology, 60, 341–342.

    Google Scholar 

  • Eckstein, B., Silva, E. G., & Bedendo, I. P. (2012). Shoot proliferation and leaf malformation of Celosia argentea and Celosia spicata caused by a phytoplasma of the 16SrIII-J group. Journal of Phytopathology. doi:10:1111/j.1439-0434.2012.01878.x.

  • Fodor, M., Viczian, O., Mergenthaler, E., & Sule, S. (1999). Cabbage infected with phytoplasma from the aster yellows group in Hungary. Acta Phytopathologica et Entomologica Hungarica, 34, 1–6.

    Google Scholar 

  • Galdeano, E., Torres, L. E., Meneguzzi, N., Guzman, F., Gomez, G. C., Do Campo, D. M., & Conci, R. (2004). Molecular characterization of 16S ribossomal DNA and phylogenetic analysis of two X-disease group phytoplasmas affecting china-tree (Melia azedarach L.) and garlic (Allium sativum L.) in Argentina. Journal of Phytopathology, 152, 174–181.

    Article  CAS  Google Scholar 

  • Galvis, C. A., Leguizamon, J. E., Gaitan, A. L., Mejia, J. F., Alvarez, E., & Arroyave, J. (2007). Detection and identification of group 16SrIII-related phytoplasma associated with coffee crispiness disease in Colombia. Plant Disease, 91, 248–252.

    Article  CAS  Google Scholar 

  • Gottwald, T. R., Cambra, M., Moreno, P., Camarasa, E., & Piquer, J. (1996). Spatial and temporal analyses of citrus tristeza virus in eastern Spain. Phytopathology, 86, 45–55.

    Article  Google Scholar 

  • Gundersen, D. E., & Lee, I.-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.

    CAS  Google Scholar 

  • Harrison, N. A., Boa, E., & Carpio, M. L. (2003). Characterization of phytoplasmas detected in Chinaberry trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathology, 52, 147–157.

    Article  CAS  Google Scholar 

  • Hollingsworth, C. R., Atkinson, L. M., Samac, D. A., Larsen, J. E., Motteberg, C. D., Abrahamson, M. D., Glogoza, P., & MacRae, I. V. (2008). Region and field level distributions of aster yellows phytoplasma in small grain crops. Plant Disease, 92, 623–630.

    Article  Google Scholar 

  • Lee, I.-M., Gundersen, D. E., Hammond, R. W., & Davis, R. E. (1994). Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology, 84, 559–566.

    Article  CAS  Google Scholar 

  • Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszik, I. M. (1998). Revised classification scheme of phytoplasma based on RFLP analysis of 16S rDNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48, 1153–1169.

    Article  CAS  Google Scholar 

  • Lee, I.-M., Martini, M., Bottner, K. D., Dane, R. A., Black, M. C., & Troxclair, N. (2003). Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology, 93, 1368–1377.

    Article  PubMed  CAS  Google Scholar 

  • Madden, L. V., Nault, L. R., Murral, D. L., & Apelt, M. R. (1995). Spatial pattern analysis of the incidence of aster yellows disease in lettuce. Researches on Population Ecology, 37, 279–289.

    Article  Google Scholar 

  • Marcone, C. (2010). Movement of phytoplasmas and the development of disease in the plant. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 114–131). Oxfordshire: CAB International.

    Google Scholar 

  • Marcone, C., & Ragozzino, A. (1995). Detection of phytoplasmas in Brassica spp. In southern Italy and their characterization by RFLP analysis. Journal of Plant Diseases and Protection, 102, 449–460.

    Google Scholar 

  • Montano, H. G., Davis, R. E., Dally, E. L., Pimentel, J. P., & Brioso, P. S. T. (2000). Identification and phylogenetic analysis of a new phytoplasma from diseased chayote in Brazil. Plant Disease, 84, 429–436.

    Article  CAS  Google Scholar 

  • Montano, H. G., Brioso, P. S. T., Pimentel, J. P., Figueiredo, D. V., & Cunha Junior, J. O. (2006). Cucurbita moschata, new phytoplasma host in Brazil. Journal of Plant Pathology, 88, 226.

    Google Scholar 

  • Olivier, C. Y., Galka, B., & Seguin-Swartz, G. (2010). Detection of aster yellows phytoplasma DNA in seed and seedlings of canola (Brassica napus and B. rapa) and AY strain identification. Canadian Journal of Plant Pathology, 32, 298–305.

    Article  CAS  Google Scholar 

  • Ribeiro, L. F. C., Mello, A. P. O. A., Bedendo, I. P., & Gioria, R. (2006). Phytoplasma associated with shoot proliferation in begonia. Scientia Agricola, 63, 475–477.

    Article  CAS  Google Scholar 

  • Salehi, M., Izadpanah, K., & Siampour, M. (2007). Characterization of a phytoplasma associated with cabbage yellows in Iran. Plant Disease, 91, 625–630.

    Article  CAS  Google Scholar 

  • Santos-Cervantes, M. E., Chávez-Medina, J. A., Acosta-Pardini, J., Flores-Zamora, G. L., Méndez-Lozano, J., & Leyva-López, N. E. (2010). Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Disease, 94, 388–395.

    Article  Google Scholar 

  • Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., Lorenk, K.-H., Seemüller, E., & Kirkpatrick, B. C. (1996). Phytoplasma-specific PCR primers based on sequence of the 16S-23S rRNA spacer region. Applied and Environmental Microbiology, 68, 2988–2993.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular evolutionary analysis (MEGA) version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, L. R. (1984). Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology, 29, 321–357.

    Article  Google Scholar 

  • Wang, K., & Hiruki, C. (2001). Molecular characterization and classification of phytoplasmas associated with canola yellows and a new phytoplasma strain associated with dandelions. Plant Disease, 85, 76–79.

    Article  CAS  Google Scholar 

  • Wei, W., Davis, R. E., Lee, I.-M., & Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855–1867.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91–111.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X., Hoy, C. W., Miller, S. A., & Nault, L. R. (2002). Spatially explicit simulation of aster epidemics and control on lettuce. Ecological Modelling, 151, 293–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Bedendo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rappussi, M.C.C., Eckstein, B., Flôres, D. et al. Cauliflower stunt associated with a phytoplasma of subgroup 16SrIII-J and the spatial pattern of disease. Eur J Plant Pathol 133, 829–840 (2012). https://doi.org/10.1007/s10658-012-0004-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0004-7

Keywords

Navigation