European Journal of Plant Pathology

, Volume 133, Issue 4, pp 829–840 | Cite as

Cauliflower stunt associated with a phytoplasma of subgroup 16SrIII-J and the spatial pattern of disease

  • M. C. C. Rappussi
  • B. Eckstein
  • D. Flôres
  • I. C. R. Haas
  • L. Amorim
  • I. P. Bedendo
Original Research


Since 2000, a disease has occurred with high levels of incidence in crops of cauliflower grown in the green belt area of the city of São Paulo, Brazil. The symptoms are characterized by stunting, malformation of the inflorescence, reddening leaves, and vascular necrosis, suggesting infection by phytoplasma. These symptoms are similar to those described in Brassicas species affected by the aster yellows (16SrI) group of phytoplasma. In the present study, a phytoplasma from the 16SrIII-J subgroup was identified in cauliflower plants based on actual and virtual RFLP patterns and phylogenetic analysis, and was distinct from the phytoplasmas frequently associated with aster yellows disease in Brassicas. Pathogenicity assays using dodder confirmed that the identified phytoplasma is the agent of the observed disease, which is here designated as cauliflower stunt. Consequently, this species of Brassica may be recognized as a new host for subgroup 16SrIII-J, which has frequently been found in diverse species cultivated in Brazil. The spatial pattern of diseased plants was determined in ten cauliflower plots of 300 to 728 plants each. All plants in these plots were evaluated by visual assessments, assigned as diseased or healthy and mapped. The dispersion index and Taylor’s power law were determined for various quadrat sizes and the results showed that the diseased plants were distributed in a random pattern in fields with a low disease incidence and in an aggregated pattern in fields with a disease incidence greater than 25 %. According to an isopath area analysis, diseased plants were predominantly present in the field borders, suggesting that the pathogen is possibly introduced by vector(s) from the external area.


Yellows Brassica oleracea Epidemiology 


  1. Amaral-Mello, A. P. O., Bedendo, I. P., & Camargo, L. E. A. (2006). Sequence heterogeneity in the 16S rDNA of tomato big bud phytoplasma belonging to group 16SrIII. Journal of Phytopathology, 154, 245–249.CrossRefGoogle Scholar
  2. Amaral-Mello, A. P. O., Eckstein, B., Flores, D., Kreyci, P. F., & Bedendo, I. P. (2011). Identification by computer-simulated RFLP of phytoplasmas associated with eggplant giant calix representative of two subgroups, a lineage of 16SrIII-J and the new subgroup 16SrIII-U. International Journal of Systematic and Evolutionary Microbiology, 61, 1454–1461.PubMedCrossRefGoogle Scholar
  3. Beanland, L., Madden, L. V., Hoy, C. W., Miller, S. A., & Nault, L. R. (2005). Temporal distribution of aster leafhopper sex ratios and spatial pattern of aster yellows phytoplasma disease in lettuce. Annals of the Entomological Society of America, 98, 756–762.CrossRefGoogle Scholar
  4. Bertaccini, A., & Duduka, B. (2009). Phytoplasma and diseases: a review of recent research. Phytopathology Mediterranea, 48, 355–378.Google Scholar
  5. Bertaccini, A., Pisi, A., & Marani, F. (1983). Virescenza e fillodia del cavolfiore e del broccolo. Informatore Fitopatologico, 33, 57–60.Google Scholar
  6. Bertaccini, A., Varáckivá, Z., Vibio, M., Fránová, J., Navratil, M., Spak, J., & Nebesárová, J. (1998). Comparison of phytoplasmas infecting winter oilseed rape in the Czech Republic with italian Brassica phytoplasmas and their relationship to the aster yellows group. Plant Pathology, 47, 317–324.CrossRefGoogle Scholar
  7. Bonnot, F., Franqueville, H., & Lourenço, E. (2010). Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique. Phytopathology, 100, 300–312.PubMedCrossRefGoogle Scholar
  8. Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. Journal of Microbiology Methods, 14, 53–61.CrossRefGoogle Scholar
  9. Duarte, V., Silva, E. G., Haas, I. C. R., Bedendo, I. P., & Kitajima, E. W. (2009). First report of a group 16SrIII-B phytoplasma associated with decline of Chine-tree in Brazil. Plant Disease, 93, 666.CrossRefGoogle Scholar
  10. Duduk, B., Bulajic, A., Duduk, N., Calari, A., Paltrinieri, S., Krstic, B., & Bertaccini, A. (2007). Identification of phytoplasmas belonging to aster yellows ribossomal group in vegetables in Serbia. Bulletin of Insectology, 60, 341–342.Google Scholar
  11. Eckstein, B., Silva, E. G., & Bedendo, I. P. (2012). Shoot proliferation and leaf malformation of Celosia argentea and Celosia spicata caused by a phytoplasma of the 16SrIII-J group. Journal of Phytopathology. doi: 10:1111/j.1439-0434.2012.01878.x.
  12. Fodor, M., Viczian, O., Mergenthaler, E., & Sule, S. (1999). Cabbage infected with phytoplasma from the aster yellows group in Hungary. Acta Phytopathologica et Entomologica Hungarica, 34, 1–6.Google Scholar
  13. Galdeano, E., Torres, L. E., Meneguzzi, N., Guzman, F., Gomez, G. C., Do Campo, D. M., & Conci, R. (2004). Molecular characterization of 16S ribossomal DNA and phylogenetic analysis of two X-disease group phytoplasmas affecting china-tree (Melia azedarach L.) and garlic (Allium sativum L.) in Argentina. Journal of Phytopathology, 152, 174–181.CrossRefGoogle Scholar
  14. Galvis, C. A., Leguizamon, J. E., Gaitan, A. L., Mejia, J. F., Alvarez, E., & Arroyave, J. (2007). Detection and identification of group 16SrIII-related phytoplasma associated with coffee crispiness disease in Colombia. Plant Disease, 91, 248–252.CrossRefGoogle Scholar
  15. Gottwald, T. R., Cambra, M., Moreno, P., Camarasa, E., & Piquer, J. (1996). Spatial and temporal analyses of citrus tristeza virus in eastern Spain. Phytopathology, 86, 45–55.CrossRefGoogle Scholar
  16. Gundersen, D. E., & Lee, I.-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.Google Scholar
  17. Harrison, N. A., Boa, E., & Carpio, M. L. (2003). Characterization of phytoplasmas detected in Chinaberry trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathology, 52, 147–157.CrossRefGoogle Scholar
  18. Hollingsworth, C. R., Atkinson, L. M., Samac, D. A., Larsen, J. E., Motteberg, C. D., Abrahamson, M. D., Glogoza, P., & MacRae, I. V. (2008). Region and field level distributions of aster yellows phytoplasma in small grain crops. Plant Disease, 92, 623–630.CrossRefGoogle Scholar
  19. Lee, I.-M., Gundersen, D. E., Hammond, R. W., & Davis, R. E. (1994). Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology, 84, 559–566.CrossRefGoogle Scholar
  20. Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszik, I. M. (1998). Revised classification scheme of phytoplasma based on RFLP analysis of 16S rDNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48, 1153–1169.CrossRefGoogle Scholar
  21. Lee, I.-M., Martini, M., Bottner, K. D., Dane, R. A., Black, M. C., & Troxclair, N. (2003). Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology, 93, 1368–1377.PubMedCrossRefGoogle Scholar
  22. Madden, L. V., Nault, L. R., Murral, D. L., & Apelt, M. R. (1995). Spatial pattern analysis of the incidence of aster yellows disease in lettuce. Researches on Population Ecology, 37, 279–289.CrossRefGoogle Scholar
  23. Marcone, C. (2010). Movement of phytoplasmas and the development of disease in the plant. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 114–131). Oxfordshire: CAB International.Google Scholar
  24. Marcone, C., & Ragozzino, A. (1995). Detection of phytoplasmas in Brassica spp. In southern Italy and their characterization by RFLP analysis. Journal of Plant Diseases and Protection, 102, 449–460.Google Scholar
  25. Montano, H. G., Davis, R. E., Dally, E. L., Pimentel, J. P., & Brioso, P. S. T. (2000). Identification and phylogenetic analysis of a new phytoplasma from diseased chayote in Brazil. Plant Disease, 84, 429–436.CrossRefGoogle Scholar
  26. Montano, H. G., Brioso, P. S. T., Pimentel, J. P., Figueiredo, D. V., & Cunha Junior, J. O. (2006). Cucurbita moschata, new phytoplasma host in Brazil. Journal of Plant Pathology, 88, 226.Google Scholar
  27. Olivier, C. Y., Galka, B., & Seguin-Swartz, G. (2010). Detection of aster yellows phytoplasma DNA in seed and seedlings of canola (Brassica napus and B. rapa) and AY strain identification. Canadian Journal of Plant Pathology, 32, 298–305.CrossRefGoogle Scholar
  28. Ribeiro, L. F. C., Mello, A. P. O. A., Bedendo, I. P., & Gioria, R. (2006). Phytoplasma associated with shoot proliferation in begonia. Scientia Agricola, 63, 475–477.CrossRefGoogle Scholar
  29. Salehi, M., Izadpanah, K., & Siampour, M. (2007). Characterization of a phytoplasma associated with cabbage yellows in Iran. Plant Disease, 91, 625–630.CrossRefGoogle Scholar
  30. Santos-Cervantes, M. E., Chávez-Medina, J. A., Acosta-Pardini, J., Flores-Zamora, G. L., Méndez-Lozano, J., & Leyva-López, N. E. (2010). Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Disease, 94, 388–395.CrossRefGoogle Scholar
  31. Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., Lorenk, K.-H., Seemüller, E., & Kirkpatrick, B. C. (1996). Phytoplasma-specific PCR primers based on sequence of the 16S-23S rRNA spacer region. Applied and Environmental Microbiology, 68, 2988–2993.Google Scholar
  32. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular evolutionary analysis (MEGA) version 4.0. Molecular Biology and Evolution, 24, 1596–1599.PubMedCrossRefGoogle Scholar
  33. Taylor, L. R. (1984). Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology, 29, 321–357.CrossRefGoogle Scholar
  34. Wang, K., & Hiruki, C. (2001). Molecular characterization and classification of phytoplasmas associated with canola yellows and a new phytoplasma strain associated with dandelions. Plant Disease, 85, 76–79.CrossRefGoogle Scholar
  35. Wei, W., Davis, R. E., Lee, I.-M., & Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855–1867.PubMedCrossRefGoogle Scholar
  36. Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91–111.PubMedCrossRefGoogle Scholar
  37. Zhou, X., Hoy, C. W., Miller, S. A., & Nault, L. R. (2002). Spatially explicit simulation of aster epidemics and control on lettuce. Ecological Modelling, 151, 293–307.CrossRefGoogle Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • M. C. C. Rappussi
    • 1
  • B. Eckstein
    • 1
  • D. Flôres
    • 1
  • I. C. R. Haas
    • 1
  • L. Amorim
    • 1
  • I. P. Bedendo
    • 1
  1. 1.Departamento de Fitopatologia e NematologiaESALQ/USPPiracicabaBrazil

Personalised recommendations