European Journal of Plant Pathology

, Volume 134, Issue 2, pp 415–430 | Cite as

Diversity among agrobacteria isolated from diseased plants of blueberry (Vaccinium corymbosum) in Argentina

  • Adriana M. Alippi
  • Ana C. López
  • Pedro A. Balatti
Original Research


The aim of this study was to isolate, identify and analyze the diversity of the causative agents of crown galls and hairy roots from symptomatic plants of Vaccinium corymbossum by means of biological, biochemical and molecular tools. All the bacteria isolated from blueberries (n = 78) were found to be Agrobacterium since they grew on three differential media, provoked cell and/or root proliferation on Kalanchoe, and contained a 730 bp partial sequence that codes for virulence genes within the virC operon found on Ti and/or Ri plasmids. Isolates were highly variable considering the ERIC-PCR patterns as well as biochemical reactions and were all represented by 7 different restriction patterns of the 16SrDNA. While most of the isolates belonged to Agrobacterium bv. 1 (n = 33) or Agrobacterium bv. 2 (n = 31) only fourteen were Agrobacterium rubi. A representative isolate of each of these three groups was further identified by sequencing the approximately 400 bp 16SrDNA. We concluded that Vaccinium plants are particularly susceptible to Agrobacterium bv. 1, Agrobacterium bv. 2, and also to Agrobacterium rubi. To our knowledge this is the first survey of Agrobacterium affecting blueberries in Argentina.


Agrobacterium rubi Agrobacterium tumefaciens Agrobacterium rhizogenes Biovars Vaccinium corymbossum Blueberries Crown gall disease Diversity PCR 



A.M.A and P.B.A. are members of the Scientific Research Career of Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) (Argentina) and A.C.L. is a Member of CONICET (CCT La Plata). This research was supported by a grant from CIC. The authors are grateful Drs. D. H. Grasso (Instituto de suelos, INTA Castelar, Argentina) and S. Süle (Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary) for providing the reference strains A. tumefaciens LBA 956 and A. vitis K306 and S4 respectively.


  1. Alippi, A. M., Dal Bo, E., Ronco, L. B., López, M. V., López, A. C., & Aguilar, O. M. (2003). Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse. Plant Pathology, 52, 287–302.CrossRefGoogle Scholar
  2. Alippi, A. M., López, A. C., & Balatti, P. A. (2010). First report of Agrobacterium rubi and Agrobacterium rhizogenes, causing crown and root gall and hairy root on blueberry in Argentina. Plant Disease, 94, 1064.CrossRefGoogle Scholar
  3. Anderson, A. R., & Moore, L. W. (1979). Host specificity in the genus Agrobacterium. Phytopathology, 69, 320–323.CrossRefGoogle Scholar
  4. Bautista-Zapanta, J.-N., Arafat, H. H., Tanaka, K., Sawada, H., & Suzuki, K. (2009). Variation of 16 S-23 S internally transcribed spacer sequence and intervening sequence in rDNA among the three major Agrobacterium species. Microbiology Research, 164, 604–612.CrossRefGoogle Scholar
  5. Benjama, A., Boubaker, H., Khlief, Z., Krimi, Z., Nesme, X., López, M. M., & Zoina, A. (2002). Susceptibility of stone-fruit rootstocks, rose and grapevine to Agrobacterium radiobacter var. tumefaciens in Arab Mediterranean countries. OEPP/EPPO Bulletin, 32, 463.CrossRefGoogle Scholar
  6. Bouzar, H., & Jones, J. B. (2001). Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumors of Ficus benjama. International Journal of Systematics and Evolutionary Microbiology, 51, 1023–1026.CrossRefGoogle Scholar
  7. Bouzar, H., Ouadah, D., Krimi, Z., Jones, J. B., Trovato, M., Petit, A., & Dessaux, Y. (1993). Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium Soil Population. Applied and Environmental Microbiology, 59, 1310–1317.PubMedGoogle Scholar
  8. Costechareyre, D., Rhouma, A., Lavire, C., Portier, P., Chapulliot, D., Bertolla, F., Boubaker, A., Dessaux, Y., & Nesme, X. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis. Microbial Ecology, 60, 862–872.PubMedCrossRefGoogle Scholar
  9. Dion, P., Belanger, C., Marquis, C., Ream, W., & Gelvin, S. B. (1996). Ecological significance of avirulence in Agrobacterium. In W. Reamand & S. B. Gelvin (Eds.), Crown Gall advances in understanding interkingdom gene transfer (pp. 44–58). St Paul: APS Press.Google Scholar
  10. Farrand, S. K., van Berkum, P., & Oger, P. (2003). Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematics and Evolutionary Microbiology, 53, 1681–1687.CrossRefGoogle Scholar
  11. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  12. Gelvin, S. B. (2010). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 223–256.CrossRefGoogle Scholar
  13. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B. S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Chris Cielo, C., & Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 294, 2323–2328.PubMedCrossRefGoogle Scholar
  14. Holmes, B., & Roberts, P. (1981). The classification, identification and nomenclature of agrobacteria. Journal of Applied Bacteriology, 50, 443–467.CrossRefGoogle Scholar
  15. Kado, C. I. (1991). Molecular mechanisms of crown gall tumorogenesis. Critical Reviews in Plant Sciences, 10, 1–32.CrossRefGoogle Scholar
  16. Kechris, K. J., Lin, J. C., Bickel, P. J., & Glazer, A. N. (2006). Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proceedings of the National Academy of Sciences, 103, 9584–9589.CrossRefGoogle Scholar
  17. Lasalle, F., Campillo, T., Vial, L., Baude, J., Costechareyre, D., Chapulliot, D., Shams, M., Abrouk, D., Lavire, C., Oger-Desfeux, C., Hommais, F., Guéguen, L., Daubin, V., Muller, D., & Nesme, X. (2011). Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biology and Evolution, 3, 762–781.CrossRefGoogle Scholar
  18. Lim, S. H., Kim, J. G., & Kang, H. W. (2009). Novel scar primers for specific and sensitive detection of Agrobacterium vitis strains. Microbiology Research, 164, 461–463.CrossRefGoogle Scholar
  19. Llop, P., Murillo, J., Lastra, B., & Lopez, M. M. (2009). Recovery of nonpathogenic mutant bacteria from tumors caused by several Agrobacterium tumefaciens strains: a frequent event? Applied and Environmental Microbiology, 75, 6504–6514.PubMedCrossRefGoogle Scholar
  20. López, A. C., & Alippi, A. M. (2007). Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. International Journal of Food Microbiology, 117, 175–184.PubMedCrossRefGoogle Scholar
  21. Minnemeyer, S. L., Lightfoot, R., & Matthysse, A. G. (2006). A semiquantitative bioassay for relative virulence of Agrobacterium tumefaciens strains on Bryophyllum daigremontiana. Journal of Bacteriology, 173, 7723–7724.Google Scholar
  22. Moore, L. W., Bouzard, H., & Burr, T. (2001). Agrobacterium. In N. W. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for the identification of plant pathogenic bacteria (pp. 17–35). St. Paul: APS Press.Google Scholar
  23. Mougel, C., Cournoyer, B., & Nesme, X. (2001). Novel tellurite-amended media and specific chromosomal and Ti plasmid probes for direct analysis of soil populations of Agrobacterium biovars 1 and 2. Applied and Environmental Microbiology, 67, 65–74.PubMedCrossRefGoogle Scholar
  24. Nesme, X., Michel, M.-F., & Digat, B. (1987). Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Applied and Environmental Microbiology, 53, 655–659.PubMedGoogle Scholar
  25. Panday, D., Schumann, P., & Das, S. K. (2011). Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). International Journal of Systematic and Evolutionary Microbiology, 61, 2632–2639.PubMedCrossRefGoogle Scholar
  26. Peluso, R., Raio, A., Morra, F., & Zoina, A. (2003). Physiological, biochemical and molecular analyses of an Italian collection of Agrobacterium tumefaciens strains. European Journal of Plant Pathology, 109, 291–300.CrossRefGoogle Scholar
  27. Perry, K. L., & Kado, C. I. (1982). Characteristics of Ti plasmids from broad-host range and ecologically specific biotype 2 and 3 strains for Agrobacterium tumefaciens. Journal of Bacteriology, 151, 343–350.PubMedGoogle Scholar
  28. Portier, P., Le Saux, M. F., Mougel, C., Lerondelle, C., Chapulliot, D., Thiolouse, J., & Nesme, X. (2006). Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Applied and Environmental Microbiology, 72, 7123–7131.PubMedCrossRefGoogle Scholar
  29. Pulawska, J., Willems, A., & Sobiczewski, P. (2006). Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR. Systematic and Applied Microbiology, 29, 470–479.PubMedCrossRefGoogle Scholar
  30. Pulawska, J., Willems, A., & Sobiczewski, P. (2012). Rhizobium skierniewicense sp. nov. isolated from tumors on chrysanthemum and Prunus in Poland. International Journal of Systematic and Evolutionary Microbiology, 62, 895–899.Google Scholar
  31. Ryder, M. H., Tate, M. E., & Kerr, A. (1985). Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs. Plant Physiology, 77, 215–221.PubMedCrossRefGoogle Scholar
  32. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences USA, 74, 5463–5467.CrossRefGoogle Scholar
  33. Sawada, H., Leki, H., & Matsuda, I. (1995). PCR detection of Ti and Ri plasmids for phytopathogenic Agrobacterium strains. Applied and Environmental Microbiology, 61, 828–831.PubMedGoogle Scholar
  34. Slater, S. C., Goldman, B. S., Goodner, B., Setubal, J. C., Farrand, S. K., Nester, E. W., Burr, T. J., Banta, L., Dickerman, A. W., Paulsen, I., Otten, L., Suen, G., Welch, R., Almeida, N. F., Arnold, F., Burton, Zijin Du, Z., Ewing, A., Godsy, E., Heisel, S., Houmiel, K. L., Jhaveri, J., Lu, J., Miller, N. M., Norton, S., Chen, Q., Phoolcharoen, W., Ohlin, V., Ondrusek, D., Pride, N., Stricklin, S. L., Sun, J., Wheeler, C., Wilson, L., Zhu, H., & Wood, D. W. (2009). Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. Journal of Bacteriology, 191, 2501–2511.PubMedCrossRefGoogle Scholar
  35. Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G., & Jarvis, B. D. W. (2000). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock microbial identification system. International Journal of Systematics and Evolutionary Microbiology, 50, 787–801.CrossRefGoogle Scholar
  36. Velázquez, E., Palomo, J. L., Rivas, R., Guerra, H., Peix, A., Trujillo, M. E., García-Benavídez, P., Mateos, P. F., Wabico, H., & Martínez Molina, E. (2010). Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Systematics and Applied Microbiology, 33, 247–251.CrossRefGoogle Scholar
  37. Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5, 25–40.Google Scholar
  38. Vincent, J. M. (1970). A manual for the practical study of root-nodule bacteria. Oxford: Blackwell.Google Scholar
  39. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16 S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.PubMedGoogle Scholar
  40. Young, J. M., Kuykendall, L. D., Martínez-Romero, E., Kerr, A., & Sawada, H. (2001). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematics and Evolutionary Microbiology, 51, 89–103.Google Scholar
  41. Young, J. M., Park, D., & Weir, B. S. (2004). Diversity of 16S rDNA sequences of Rhizobium spp. implications for species determinations. FEMS Microbiology Letters, 238, 125–131.PubMedGoogle Scholar
  42. Young, J. M., Kerr, A., & Sawada, H. (2005). Genus II. Agrobacterium. In G. M. Garrity, D. J. Brenner, N. R. Krieg, & J. R. Staley (Eds.), Bergey’s manual of systematic bacteriology, volume two: The Proteobacteria, parts A - C (pp. 340–345). Athens: Springer – Verlag.Google Scholar

Copyright information

© KNPV 2012

Authors and Affiliations

  • Adriana M. Alippi
    • 1
  • Ana C. López
    • 1
  • Pedro A. Balatti
    • 1
  1. 1.Centro de Investigaciones de Fitopatología CIDEFIFacultad de Ciencias Agrarias y Forestales Universidad Nacional de La PlataLa PlataArgentina

Personalised recommendations