Skip to main content
Log in

Diversity among agrobacteria isolated from diseased plants of blueberry (Vaccinium corymbosum) in Argentina

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate, identify and analyze the diversity of the causative agents of crown galls and hairy roots from symptomatic plants of Vaccinium corymbossum by means of biological, biochemical and molecular tools. All the bacteria isolated from blueberries (n = 78) were found to be Agrobacterium since they grew on three differential media, provoked cell and/or root proliferation on Kalanchoe, and contained a 730 bp partial sequence that codes for virulence genes within the virC operon found on Ti and/or Ri plasmids. Isolates were highly variable considering the ERIC-PCR patterns as well as biochemical reactions and were all represented by 7 different restriction patterns of the 16SrDNA. While most of the isolates belonged to Agrobacterium bv. 1 (n = 33) or Agrobacterium bv. 2 (n = 31) only fourteen were Agrobacterium rubi. A representative isolate of each of these three groups was further identified by sequencing the approximately 400 bp 16SrDNA. We concluded that Vaccinium plants are particularly susceptible to Agrobacterium bv. 1, Agrobacterium bv. 2, and also to Agrobacterium rubi. To our knowledge this is the first survey of Agrobacterium affecting blueberries in Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alippi, A. M., Dal Bo, E., Ronco, L. B., López, M. V., López, A. C., & Aguilar, O. M. (2003). Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse. Plant Pathology, 52, 287–302.

    Article  CAS  Google Scholar 

  • Alippi, A. M., López, A. C., & Balatti, P. A. (2010). First report of Agrobacterium rubi and Agrobacterium rhizogenes, causing crown and root gall and hairy root on blueberry in Argentina. Plant Disease, 94, 1064.

    Article  Google Scholar 

  • Anderson, A. R., & Moore, L. W. (1979). Host specificity in the genus Agrobacterium. Phytopathology, 69, 320–323.

    Article  Google Scholar 

  • Bautista-Zapanta, J.-N., Arafat, H. H., Tanaka, K., Sawada, H., & Suzuki, K. (2009). Variation of 16 S-23 S internally transcribed spacer sequence and intervening sequence in rDNA among the three major Agrobacterium species. Microbiology Research, 164, 604–612.

    Article  CAS  Google Scholar 

  • Benjama, A., Boubaker, H., Khlief, Z., Krimi, Z., Nesme, X., López, M. M., & Zoina, A. (2002). Susceptibility of stone-fruit rootstocks, rose and grapevine to Agrobacterium radiobacter var. tumefaciens in Arab Mediterranean countries. OEPP/EPPO Bulletin, 32, 463.

    Article  Google Scholar 

  • Bouzar, H., & Jones, J. B. (2001). Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumors of Ficus benjama. International Journal of Systematics and Evolutionary Microbiology, 51, 1023–1026.

    Article  CAS  Google Scholar 

  • Bouzar, H., Ouadah, D., Krimi, Z., Jones, J. B., Trovato, M., Petit, A., & Dessaux, Y. (1993). Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium Soil Population. Applied and Environmental Microbiology, 59, 1310–1317.

    PubMed  CAS  Google Scholar 

  • Costechareyre, D., Rhouma, A., Lavire, C., Portier, P., Chapulliot, D., Bertolla, F., Boubaker, A., Dessaux, Y., & Nesme, X. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis. Microbial Ecology, 60, 862–872.

    Article  PubMed  CAS  Google Scholar 

  • Dion, P., Belanger, C., Marquis, C., Ream, W., & Gelvin, S. B. (1996). Ecological significance of avirulence in Agrobacterium. In W. Reamand & S. B. Gelvin (Eds.), Crown Gall advances in understanding interkingdom gene transfer (pp. 44–58). St Paul: APS Press.

    Google Scholar 

  • Farrand, S. K., van Berkum, P., & Oger, P. (2003). Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematics and Evolutionary Microbiology, 53, 1681–1687.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Gelvin, S. B. (2010). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 223–256.

    Article  Google Scholar 

  • Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B. S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Chris Cielo, C., & Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 294, 2323–2328.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, B., & Roberts, P. (1981). The classification, identification and nomenclature of agrobacteria. Journal of Applied Bacteriology, 50, 443–467.

    Article  Google Scholar 

  • Kado, C. I. (1991). Molecular mechanisms of crown gall tumorogenesis. Critical Reviews in Plant Sciences, 10, 1–32.

    Article  CAS  Google Scholar 

  • Kechris, K. J., Lin, J. C., Bickel, P. J., & Glazer, A. N. (2006). Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proceedings of the National Academy of Sciences, 103, 9584–9589.

    Article  CAS  Google Scholar 

  • Lasalle, F., Campillo, T., Vial, L., Baude, J., Costechareyre, D., Chapulliot, D., Shams, M., Abrouk, D., Lavire, C., Oger-Desfeux, C., Hommais, F., Guéguen, L., Daubin, V., Muller, D., & Nesme, X. (2011). Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biology and Evolution, 3, 762–781.

    Article  Google Scholar 

  • Lim, S. H., Kim, J. G., & Kang, H. W. (2009). Novel scar primers for specific and sensitive detection of Agrobacterium vitis strains. Microbiology Research, 164, 461–463.

    Article  Google Scholar 

  • Llop, P., Murillo, J., Lastra, B., & Lopez, M. M. (2009). Recovery of nonpathogenic mutant bacteria from tumors caused by several Agrobacterium tumefaciens strains: a frequent event? Applied and Environmental Microbiology, 75, 6504–6514.

    Article  PubMed  CAS  Google Scholar 

  • López, A. C., & Alippi, A. M. (2007). Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. International Journal of Food Microbiology, 117, 175–184.

    Article  PubMed  Google Scholar 

  • Minnemeyer, S. L., Lightfoot, R., & Matthysse, A. G. (2006). A semiquantitative bioassay for relative virulence of Agrobacterium tumefaciens strains on Bryophyllum daigremontiana. Journal of Bacteriology, 173, 7723–7724.

    Google Scholar 

  • Moore, L. W., Bouzard, H., & Burr, T. (2001). Agrobacterium. In N. W. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for the identification of plant pathogenic bacteria (pp. 17–35). St. Paul: APS Press.

    Google Scholar 

  • Mougel, C., Cournoyer, B., & Nesme, X. (2001). Novel tellurite-amended media and specific chromosomal and Ti plasmid probes for direct analysis of soil populations of Agrobacterium biovars 1 and 2. Applied and Environmental Microbiology, 67, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Nesme, X., Michel, M.-F., & Digat, B. (1987). Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Applied and Environmental Microbiology, 53, 655–659.

    PubMed  CAS  Google Scholar 

  • Panday, D., Schumann, P., & Das, S. K. (2011). Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). International Journal of Systematic and Evolutionary Microbiology, 61, 2632–2639.

    Article  PubMed  Google Scholar 

  • Peluso, R., Raio, A., Morra, F., & Zoina, A. (2003). Physiological, biochemical and molecular analyses of an Italian collection of Agrobacterium tumefaciens strains. European Journal of Plant Pathology, 109, 291–300.

    Article  CAS  Google Scholar 

  • Perry, K. L., & Kado, C. I. (1982). Characteristics of Ti plasmids from broad-host range and ecologically specific biotype 2 and 3 strains for Agrobacterium tumefaciens. Journal of Bacteriology, 151, 343–350.

    PubMed  CAS  Google Scholar 

  • Portier, P., Le Saux, M. F., Mougel, C., Lerondelle, C., Chapulliot, D., Thiolouse, J., & Nesme, X. (2006). Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Applied and Environmental Microbiology, 72, 7123–7131.

    Article  PubMed  CAS  Google Scholar 

  • Pulawska, J., Willems, A., & Sobiczewski, P. (2006). Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR. Systematic and Applied Microbiology, 29, 470–479.

    Article  PubMed  CAS  Google Scholar 

  • Pulawska, J., Willems, A., & Sobiczewski, P. (2012). Rhizobium skierniewicense sp. nov. isolated from tumors on chrysanthemum and Prunus in Poland. International Journal of Systematic and Evolutionary Microbiology, 62, 895–899.

    Google Scholar 

  • Ryder, M. H., Tate, M. E., & Kerr, A. (1985). Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs. Plant Physiology, 77, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences USA, 74, 5463–5467.

    Article  CAS  Google Scholar 

  • Sawada, H., Leki, H., & Matsuda, I. (1995). PCR detection of Ti and Ri plasmids for phytopathogenic Agrobacterium strains. Applied and Environmental Microbiology, 61, 828–831.

    PubMed  CAS  Google Scholar 

  • Slater, S. C., Goldman, B. S., Goodner, B., Setubal, J. C., Farrand, S. K., Nester, E. W., Burr, T. J., Banta, L., Dickerman, A. W., Paulsen, I., Otten, L., Suen, G., Welch, R., Almeida, N. F., Arnold, F., Burton, Zijin Du, Z., Ewing, A., Godsy, E., Heisel, S., Houmiel, K. L., Jhaveri, J., Lu, J., Miller, N. M., Norton, S., Chen, Q., Phoolcharoen, W., Ohlin, V., Ondrusek, D., Pride, N., Stricklin, S. L., Sun, J., Wheeler, C., Wilson, L., Zhu, H., & Wood, D. W. (2009). Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. Journal of Bacteriology, 191, 2501–2511.

    Article  PubMed  CAS  Google Scholar 

  • Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G., & Jarvis, B. D. W. (2000). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock microbial identification system. International Journal of Systematics and Evolutionary Microbiology, 50, 787–801.

    Article  CAS  Google Scholar 

  • Velázquez, E., Palomo, J. L., Rivas, R., Guerra, H., Peix, A., Trujillo, M. E., García-Benavídez, P., Mateos, P. F., Wabico, H., & Martínez Molina, E. (2010). Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Systematics and Applied Microbiology, 33, 247–251.

    Article  Google Scholar 

  • Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5, 25–40.

    CAS  Google Scholar 

  • Vincent, J. M. (1970). A manual for the practical study of root-nodule bacteria. Oxford: Blackwell.

    Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16 S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    PubMed  CAS  Google Scholar 

  • Young, J. M., Kuykendall, L. D., Martínez-Romero, E., Kerr, A., & Sawada, H. (2001). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematics and Evolutionary Microbiology, 51, 89–103.

    CAS  Google Scholar 

  • Young, J. M., Park, D., & Weir, B. S. (2004). Diversity of 16S rDNA sequences of Rhizobium spp. implications for species determinations. FEMS Microbiology Letters, 238, 125–131.

    PubMed  CAS  Google Scholar 

  • Young, J. M., Kerr, A., & Sawada, H. (2005). Genus II. Agrobacterium. In G. M. Garrity, D. J. Brenner, N. R. Krieg, & J. R. Staley (Eds.), Bergey’s manual of systematic bacteriology, volume two: The Proteobacteria, parts A - C (pp. 340–345). Athens: Springer – Verlag.

    Google Scholar 

Download references

Acknowledgments

A.M.A and P.B.A. are members of the Scientific Research Career of Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) (Argentina) and A.C.L. is a Member of CONICET (CCT La Plata). This research was supported by a grant from CIC. The authors are grateful Drs. D. H. Grasso (Instituto de suelos, INTA Castelar, Argentina) and S. Süle (Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary) for providing the reference strains A. tumefaciens LBA 956 and A. vitis K306 and S4 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana M. Alippi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alippi, A.M., López, A.C. & Balatti, P.A. Diversity among agrobacteria isolated from diseased plants of blueberry (Vaccinium corymbosum) in Argentina. Eur J Plant Pathol 134, 415–430 (2012). https://doi.org/10.1007/s10658-012-0001-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0001-x

Keywords

Navigation