Skip to main content
Log in

Characterization of isolates that cause black rot of crucifers in East Africa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A study was conducted in the East African countries of Kenya, Tanzania and Uganda in the months of July and August 2009 with the objectives of assessing the status of black rot and race structure of Xanthomonas campestris pv. campestris in the three countries. Samples infected with black rot were collected from farmers’ fields mainly from Brassica oleracea crops (broccoli, cabbage, cauliflower and kales). A total of 399 farms were surveyed of which 260 were from Kenya, 91 from Tanzania and 48 from Uganda. Following successful isolations, a total of 249 isolates of the causal agent, Xanthomonas campestris pv. campestris were recovered. Pathogenicity of all isolates was confirmed on B. oleracea susceptible cultivars Copenhagen Market F1 and Wirosa F1. Sixty of the 250 isolates were race-typed using a differential set Brassica spp. Only two races, 1 (Kenya and Tanzania) and 4 (Kenya, Tanzania and Uganda) were observed however, another race (5) was observed from one isolate recovered from a B. rapa sample obtained from Tanzania in 2003. Genomic fingerprinting with repetitive-PCR revealed clusters that did not depict significant correlations between isolates and geographical location, isolates and host adaptation or isolates and race. However, it did demonstrate existence of genetic differences within the East African X. campestris pv. campestris population indicating that it is not a similar clonal population of the same genetic background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cook, A. A., Larson, R. H., & Walker, J. C. (1952). Studies on the disease cycle of black rot of crucifers. Phytopathology, 42, 162–167.

    Google Scholar 

  • Fargier, E., & Manceau, C. (2007). Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathology, 56, 805–818.

    Article  Google Scholar 

  • Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296.

    Article  Google Scholar 

  • Flor, H. H., & Comstock, V. E. (1972). Identification of rust-conditioning genes in flax cultivars. Crop Science, 12, 800–804.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9.

    Google Scholar 

  • Jensen, B. D., Massomo, S. M. S., Swai, I. S., Hockenhull, J., & Andersen, S. B. (2005). Field evaluation for resistance to black rot pathogen Xanthomonas campestris pv. campestris in cabbage (Brassica oleracea). European Journal of Plant Pathology, 113, 297–308.

    Article  Google Scholar 

  • Jensen, B. D., Vicente, J. G., Manandhar, H. K., & Roberts, S. J. (2010). Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Disease, 94, 298–305.

    Article  CAS  Google Scholar 

  • Kamoun, S., Kamdar, H. V., Tola, E., & Kado, C. I. (1992). Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: Role of the hrpX locus. Molecular Plant-Microbe Interactions, 5, 22–23.

    Article  CAS  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. R. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Translational Research, 44, 301–307.

    CAS  Google Scholar 

  • Kogan, S. C., Doherty, M., & Gitschier, J. (1987). An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. Application to hemophilia A. The New England Journal of Medicine, 317, 985–990.

    Article  PubMed  CAS  Google Scholar 

  • Lelliot, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. Oxford: Blackwell Scientific Publications Ltd.

    Google Scholar 

  • Lupski, J. R., & Weinstock, G. M. (1992). Short, interspersed repetitive DNA sequences in prokaryotic genomes. Journal of Bacteriology, 174

  • Massomo, S. M. S., Nielsen, H., Mabagala, R. B., Mansfield-Giese, K., Hockenhull, J., & Mortensen, C. N. (2003). Identification and characterisation of Xanthomonas campestris pv. campestris strains from Tanzania by pathogenicity tests, biolog, rep-PCR and fatty acid methyl ester analysis. European Journal of Plant Pathology, 109, 775–789.

    Article  CAS  Google Scholar 

  • Massomo, S. M. S., Mabagala, R. B., Swai, I. S., Hockenhull, J., & Mortensen, C. N. (2004). Evaluation of varietal resistance in cabbage against the black rot pathogen, Xanthomonas campestris pv. campestris in Tanzania. Crop Protection, 23, 315–325.

    Article  Google Scholar 

  • Mgonja, A. P., & Swai, I. (2000). Importance of diseases and insect pests of vegetables in Tanzania and limitations in adopting the control methods. In M. L. Chadha, A. P. Mgonja, R. Nono-Womdim, & I. Swai (Eds.), Proceedings of the second national vegetable research and development planning workshop, held on 25–26 June 1998 (pp. 28–34). Arusha: AVRDC-ARP, Arusha,Tanzania, HORTI- Tengeru.

    Google Scholar 

  • Mwasha, A. M. (2000). Status of vegetable production in Tanzania. In M. L. Chandha, A. P. Mgonja, R. Nono-Womdim, & I. S. Swai (Eds.), Proceedings of the second national vegetable research and development planning workshop (pp. 22–27). Arusha: AVRDC-ARP.

    Google Scholar 

  • Roberts, S. J., Hiltunen, L. H., Hunter, P. J., & Brough, J. (1999). Transmission from seed to seedling and secondary spread of Xanthomonas campestris pv. campestris in Brassica transplants: Effects of dose and watering regime. European Journal of Plant Pathology, 105, 879–889.

    Article  Google Scholar 

  • Schaad, N. W., & Dianese, J. C. (1981). Cruciferous weeds as sources of inoculum of Xanthomonas campestris in Black rot of crucifers. Phytopathology, 71, 1215–1220.

    Article  Google Scholar 

  • Schaad, N. W., Sitterly, W. R., & Humaydan, H. (1980). Relationship of incidence of seedborne Xanthomonas campestris to black rot of crucifers. Plant Disease, 64, 91–92.

    Article  Google Scholar 

  • Shakya, D. D., Louws, F. J., & Alvarez, A. M. (2000). Diversity of Xanthomonas campestris pv. campestris (Xcc) populations in Nepal. Phytopathology, 90, S71.

    Google Scholar 

  • Smibert, R. M., & Krieg, N. R. (1994). Phenotypic characterization. In P. Gerhardt, R. G. Murray, W. A. Wood, & N. R. Krieg (Eds.), Methods for general and molecular bacteriology, vol 607–654. Washington: American Society for Microbiology.

    Google Scholar 

  • Soengas, P., Hand, P., Vicente, J. G., Pole, J. M., & Pink, D. A. (2007). Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theoretical and Applied Genetics, 114, 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 8, 1596–1599.

    Article  Google Scholar 

  • Taylor, J. D., Conway, J., Roberts, S. J., Astley, D., & Vicente, J. G. (2002). Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology, 92, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Versalovic, J., Koueth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of baceterial genomes. Nucleic Acids Research, 19, 6823–6831.

    Article  PubMed  CAS  Google Scholar 

  • Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5, 24–40.

    Google Scholar 

  • Vicente, J. G., & Roberts, S. J. (2007). Discrimination of Pseudomonas syringae isolates from sweet and wild cherry using rep-PCR. European Journal of Plant Pathology, 117, 383–392.

    Article  CAS  Google Scholar 

  • Vicente, J. G., Conway, J., Roberts, S. J., & Taylor, J. D. (2001). Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology, 91, 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Vicente, J. G., Everett, B., & Roberts, S. J. (2006). Identification of isolates that cause a leaf spot disease of Brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology, 96, 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Wambani, H., Nyambati, E. M., Kamidi, M., Mulati, J. (2007). Participatory evaluation of cabbage varieties as a source of food and income for smallholder farmers in north western Kenya. In The 8th African Crop Science Society 2007 conference “crop research, technology dissemination and adoption to increase food supply, reducing hunger and poverty in Africa”, vol 3 (pp 355–357). El Minia, Egypt: African Crop Science Society, Minia University.

Download references

Acknowledgements

This work was funded by BBSRC and DFID through a SARID grant (BB/F004338/1). We acknowledge the assistance extended by Dr. Afihini S. M. Ijani of Tropical Pesticides Research Institute, Arusha, Tanzania in farmer field surveys in Meru District and Mr. Joseph Kinoti of National Agricultural Research Laboratories, KARI, Nairobi, Kenya for the Xcc isolations as well as the overwhelming cooperation displayed by farmers from East Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. K. Mulema.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulema, J.M.K., Vicente, J.G., Pink, D.A.C. et al. Characterization of isolates that cause black rot of crucifers in East Africa. Eur J Plant Pathol 133, 427–438 (2012). https://doi.org/10.1007/s10658-011-9916-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9916-x

Keywords

Navigation