European Journal of Plant Pathology

, Volume 133, Issue 2, pp 391–404 | Cite as

Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoë fawcettii

  • S. N. Mondal
  • M. Dutt
  • J. W. Grosser
  • M. M. Dewdney


Citrus scab, caused by Elsinoë fawcettii (anamorph Sphaceloma fawcettii), is a common foliar fungal disease affecting many citrus cultivars, including grapefruit. No commercial grapefruit cultivar is resistant to scab, and the disease results in severely blemished fruit which reduces its marketability. Transgenic ‘Duncan’ grapefruit trees expressing the antimicrobial attE gene were produced via Agrobacterium-mediated transformation. In in vitro leaf and greenhouse assays, several transgenic-lines had significantly lower susceptibility to E. fawcettii compared to the non-transformed control (P < 0.0001). In the greenhouse studies, sporulation on all transgenic lines except 1 was significantly reduced (P < 0.0001) but the level of sporulation over time did not correspond to disease severity ratings. Lesion size was also significantly reduced on transgenic lines compared to the non-transformed control (P < 0.0001) and the least susceptible line A-23 had the smallest lesions, but in general there was no correlation between lesion size and disease susceptibility. The level of attE mRNA was inversely related to the number of copies detected by Southern blot. The least susceptible line had a single inserted copy of the attE transgene whereas more susceptible lines had multiple copies. Since the attacin mode of action was thought to be specific to Gram-negative bacteria, it was unexpected to find that there was a significant activity against E. fawcettii.


Citrus paradisi Agrobacterium-mediated transformation Antimicrobial peptide 



The authors would like to thank Dr. Herb Aldwinckle, NYSAES Cornell University, USA for providing us with the pCa2Att/121 clone and Drs. Dennis Gray and Zhijian Li, MREC, University of Florida, USA for providing us with a binary vector containing the bifunctional nptII/egfp fusion gene.


  1. Bitancourt, A. A., & Jenkins, A. E. (1936). Elsinoë fawcettii, the perfect stage of citrus scab fungus. Phytopathology, 26, 393–396.Google Scholar
  2. Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., De Samblanx, G. W., & Osborn, R. W. (1997). Antimicrobial peptides from plants. Critical Review of Plant Science, 16, 297–323.Google Scholar
  3. Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric analysis of longitudinal data in factorial experiments. New York: John Wiley & Sons.Google Scholar
  4. Burrow, M. D., Chlan, C. A., Sen, P., & Murai, N. (1990). High frequency generation of transgenic tobacco plants after modified leaf disk co-cultivation with Agrobacterium tumefaciens. Plant Molecular Biology Reporter, 8, 124–139.CrossRefGoogle Scholar
  5. Campo, S., Manrique, S., García-Martínez, J., & San Segundo, B. (2008). Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnology Journal, 6, 585–608.PubMedCrossRefGoogle Scholar
  6. Cardoso, S. C., Mendes, J. M. B., Camargo, R. L. B., Christiano, R. S. C., Filho, A. B., Vieira, M. L. C., et al. (2010). Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Molecular and Biological Report, 28, 185–192.CrossRefGoogle Scholar
  7. Carlsson, A., Nystrom, T., de Cock, H., & Bennich, H. (1998). Attacin - an insect immune protein - binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology-Society for General Microbiology, 144, 2179–2188.Google Scholar
  8. Carlsson, A., Engstrom, P., Palva, E. T., & Bennich, H. (1991). Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infection and Immunity, 59, 3040–3045.Google Scholar
  9. Coca, M., Peñas, G., Gómez, J., Campo, S., Bortolotti, C., Messeguer, J., et al. (2006). Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta, 223, 392–406.PubMedCrossRefGoogle Scholar
  10. DeLucca, A. J., Bland, J. M., Jacks, T. J., Grimm, C., Cleveland, T. E., & Walsh, T. J. (1997). Fungicidal activity of cecropin A. Antimicrobial Agents and Chemotherapy, 4, 481–483.Google Scholar
  11. De Lucca, A. J., Bland, J. M., Grimm, C., Jacks, T. J., Cary, J. W., Jaynes, J. M., et al. (1998). Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. Canadian Journal of Microbiology, 44, 514–520.PubMedCrossRefGoogle Scholar
  12. Dewdney, M. M., & Timmer, L. W. (2010) Citrus scab. In M. E. Rogers, M. M. Dewdney, & T. M. Spann (Eds), 2011 Florida Citrus Pest Management Guide: University of Florida, IFAS. pp. 3.
  13. Dutt, M., & Grosser, J. (2009). Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell, Tissue and Organ Culture, 98, 331–340.CrossRefGoogle Scholar
  14. Dutt, M., Orbovic, V., & Grosser, J. W. (2009). Cultivar dependent gene transfer into citrus using Agrobacterium. Proceedings of the Florida State Horticultural Society, 122, 85–89.Google Scholar
  15. Dutt, M., Madhavaraj, J., & Grosser, J. W. (2010). Agrobacterium tumefaciens-mediated genetic transformation and plant regeneration from a complex tetraploid hybrid citrus rootstock. Scientia Horticulturae, 123, 454–458.CrossRefGoogle Scholar
  16. Engstrom, P., Carlsson, A., Engstrom, Å., Tao, Z.-J., & Bennich, H. (1984). The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO Journal, 3, 3347–3351.PubMedGoogle Scholar
  17. Gelvin, S. B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Reviews of Plant Physiology and Plant Molecular Biology, 51, 223–256.CrossRefGoogle Scholar
  18. Gmitter, F. G., Jr. (2010). Origin, evolution, and breeding of the grapefruit. In J. Janick (Ed.), Plant breeding reviews, volume 13. Oxford: John Wiley & Sons, Inc. doi: 10.1002/9780470650059.ch10.Google Scholar
  19. Grosser, J. W., & Gmitter, F. G., Jr. (2010). Protoplast fusion in the production of tetraploids and triploids: Applications in scion and rootstock breeding. Plant Cell Tissue and Organ Culture, 104, 343–357.CrossRefGoogle Scholar
  20. Hobbs, S. L., Kpodar, P., & Delong, C. M. (1990). The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Molecular Biology, 15, 851–864.PubMedCrossRefGoogle Scholar
  21. Hood, E. E., Gelvin, S. B., Melchers, L. S., & Hoekema, A. (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 2, 208–218.CrossRefGoogle Scholar
  22. Hultmark, D., Engstrom, A., Andersson, K., Steiner, H., Bennich, H., & Boman, H. G. (1983). Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO Journal, 2, 571–576.PubMedGoogle Scholar
  23. Hyun, J. W., Yi, S. H., Mackenzie, S. J., Timmer, L. W., Kim, K. S., Kang, S. K., et al. (2009). Pathotypes and genetic relationship of worldwide collections of Elsinoë spp. causing scab diseases of citrus. Phytopathology, 99, 721–728.PubMedCrossRefGoogle Scholar
  24. Ieki, H. (1981). Resistance of Citrus to scab. International Citrus Congress (4th : 1981 : Tokyo, Japan) International Society of Citriculture, 1, 340–344.Google Scholar
  25. Jaynes, J. M., Nagpala, P., Destéfano-Beltran, L., Huang, J. H., Kim, J., Denny, T., et al. (1993). Expression of a cercopin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Science, 89, 43–53.CrossRefGoogle Scholar
  26. Kim, K. W., Hyun, J. W., & Park, E. W. (2004). Cytology of cork layer formation of citrus and limited growth of Elsinoë fawcettii in scab lesions. European Journal of Plant Pathology, 110, 129–138.CrossRefGoogle Scholar
  27. Ko, K., Norelli, J. L., Reynoird, J.-P., Boresjza-Wysocka, E., Brown, S. K., & Aldwinckle, H. S. (2000). Effect of untranslated leader sequence of AMV RNA4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnology Letters, 22, 373–381.CrossRefGoogle Scholar
  28. Kumar, S., & Fladung, M. (2001). Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta, 213, 731–740.PubMedCrossRefGoogle Scholar
  29. Li, Z., Jayasankar, S., & Gray, D. J. (2001). Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Science, 160, 877–887.PubMedCrossRefGoogle Scholar
  30. Martin, D. I., & Whitelaw, E. (1996). The vagaries of variegating transgenes. Bioessays, 18, 919–923.PubMedCrossRefGoogle Scholar
  31. Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., et al. (1991). T-DNA integration: a model of illegitimate recombination in plants. EMBO Journal, 10, 697–704.PubMedGoogle Scholar
  32. Mitsuhara, I., Matsufuru, H., Ohshima, M., Kaku, H., Nakajima, Y., Murai, N., et al. (2000). Induced expression of sarcotoxin1A enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Molecular Plant-Microbe Interactions, 13, 860–868.PubMedCrossRefGoogle Scholar
  33. Norelli, J. L., Aldwinckle, H. S., Destéfano-Beltrán, L., & Jaynes, J. M. (1994). Transgenic ‘Mailing 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica, 77, 123–128.CrossRefGoogle Scholar
  34. Norelli, J. L., Borejsza-Wysocka, E., Reynoird, J.-P., & Aldwinckle, H. S. (2000). Transgenic ‘Royal Gala’ apple expressing Attacin E has increased field resistance to Erwinia amylovora (fire blight). Acta Hortculturae, 538, 631–633.Google Scholar
  35. Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2000). Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechology, 18, 1162–1166.CrossRefGoogle Scholar
  36. Pena, L., Cervera, M., Ghorbel, R., Domínguez, A., Fagoaga, C., Juarez, J., et al. (2007). Genetic transformation. In I. A. Khan (Ed.), Citrus genetics, breeding, and biotechnology (pp. 329–344). Wallingford: CABI International.CrossRefGoogle Scholar
  37. Rajasekaran, K., Stromberg, K. D., Cary, J. W., & Cleveland, T. E. (2001). Broad-Spectrum Antimicrobial Activity in vitro of the Synthetic Peptide D4E1. Journal of Agricultural and Food Chemistry, 49, 2799–2803.PubMedCrossRefGoogle Scholar
  38. Reddy, M. S., Dinkins, R. D., & Collins, G. B. (2003). Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Report, 21, 676–683.Google Scholar
  39. Reynoird, J. P., Mourgues, F., Norelli, J., Aldwinckle, H. S., Brisset, M. N., & Chevreau, E. (1999). First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Science, 149, 23–31.CrossRefGoogle Scholar
  40. Shah, D. A., & Madden, L. V. (2004). Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathology, 94, 33–43.PubMedCrossRefGoogle Scholar
  41. Thevissen, K., Ferket, K. K. A., François, I. E. J. A., & Cammue, B. P. A. (2003). Interactions of antifungal plant defensins with fungal membrane components. Peptides, 24(11), 1705–1712.PubMedCrossRefGoogle Scholar
  42. Timmer, L. W. (2000). Scab diseases. In L. W. Timmer, S. M. Garnsey, & J. H. Graham (Eds.), Compendium of citrus diseases (2nd ed., pp. 31–32). St. Paul: American Phytopathological Society Press.Google Scholar
  43. Timmer, L. W., & Zitko, S. E. (1993) Techniques for greenhouse evaluation of fungicides for control of citrus scab. In E. Rabe (Ed.), Proceedings of the IV Congress of the International Society of Citrus Nurserymen (pp. 125–129). Johannesburg: The South African Citrus Nurserymen’s Association.Google Scholar
  44. Timmer, L. W., Priest, M., Broadbent, P., & Tan, M.-K. (1996). Morphological and pathological characterization of species of Elsinoë causing scab diseases of citrus. Phytopathology, 86, 1032–1038.CrossRefGoogle Scholar
  45. Timmer, L. W., Roberts, P. D., Chung, K. R., & Bhatia, A. (2001). Citrus scab (PP153): University of Florida Institute of Food and Agricultural Sciences.
  46. Timmer, L. W., Mondal, S. N., Peres, N. A. R., & Bhatia, A. (2004). Fungal diseases of fruit and foliage of citrus trees. In S. A. M. H. Naqvi (Ed.), Diseases of Fruits and Vegetables – Diagnosis and Management, vol. 1, (pp. 191–227). Dordrecht: Kluwer Academic Publishers.Google Scholar
  47. Tollin, M., Bergman, P., Svenberg, T., Jörnvall, H., Gudmundsson, G. H., & Agerberth, B. (2003). Antimicrobial peptides in the first line defence of human colon mucosa. Peptides, 24, 523–530.PubMedCrossRefGoogle Scholar
  48. Van Attikum, H., Bundock, P., & Hooykaas, P. J. J. (2001). Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO Journal, 20, 6550–6558.PubMedCrossRefGoogle Scholar
  49. van Hofsten, P., Faye, I., Kockum, K., Lee, J. Y., Xanthopoulos, K. G., Boman, I. A., et al. (1985). Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proceedings of the National Academy of Science USA, 82, 2240–2243.CrossRefGoogle Scholar
  50. Whiteside, J. O. (1975). Biological characteristics of Elsinoë fawcettii pertaining to the epidemiology of sour orange scab. Phytopathology, 65, 1170–1177.CrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • S. N. Mondal
    • 1
  • M. Dutt
    • 1
  • J. W. Grosser
    • 1
  • M. M. Dewdney
    • 1
  1. 1.Citrus Research and Education CenterUniversity of Florida/IFASLake AlfredUSA

Personalised recommendations