European Journal of Plant Pathology

, Volume 133, Issue 2, pp 379–390 | Cite as

Phylogenetic relationship and genetic diversity of Agrobacterium spp. isolated in Poland based on gyrB gene sequence analysis and RAPD

  • Joanna Puławska
  • Monika Kałużna


The genetic diversity of 47 strains of Agrobacterium originating from different host plants and geographical locations in Poland, together with 12 strains from other countries was investigated. It was analyzed using RFLP of DNA fragment amplified with primers UP-1 and UP-2r flanking part of gyrB and parE genes, gyrB sequencing and randomly amplified polymorphic DNA (RAPD) technique. On the basis of obtained results, we found the majority of agrobacteria isolated in Poland belong to biovar 2. However, among others, three strains distinct from type strains of all the known Agrobacterium species, were discovered. All three methods showed no correlation between genetic diversity and geographical origin or the host plant of all studied strains but they revealed high diversity of the tested agrobacteria. The highest diversity was observed within strains of biovar 1, whereas those of biovar 2 were found to be the more homogenous group. The topology of the constructed gyrB tree corresponds to topologies of 16S and 23S rDNA trees obtained in this and other studies, but the gyrB tree had deeper branching. In the case of RAPD, it was possible to find a unique DNA fingerprint for almost each strain tested. The gyrB gene appeared to be a good phylogenetic marker with high discrimination power allowing better differentiation between species and strains, whereas the RAPD technique can serve as a tool for single strain typing.


Crown gall Fruit trees Hairy-roots 



Authors wishes to thank: Noëlle Amarger (INRA, France), Xavier Nesme (University of Lyon, France), Esperanza Martinez Romero (CCG, Mexico), Xinhua Sui (ChAU, China), Marta Zawadzka (IH, Poland) for providing bacterial strains. This work was partly supported by the Polish Scientific Committee (KBN) Grant 580/E-177/SPB/COST/P-06/DZ 447/2002-2005.


  1. Alconero, R. (1980). Crown gall of peaches from Maryland, South Carolina, and Tennessee and problems with biological control. Plant Disease, 64, 835–838.CrossRefGoogle Scholar
  2. Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25, 4692–4693.PubMedCrossRefGoogle Scholar
  3. Bouzar, H., & Jones, J. B. (2001). Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. International Journal of Systematic and Evolutionary Microbiology, 51, 1023–1026.PubMedCrossRefGoogle Scholar
  4. Bouzar, H., & Moore, L. W. (1987). Isolation of different Agrobacterium biovars from a natural oak savanna and tallgrass prairie. Applied and Environmental Microbiology, 53, 717–721.PubMedGoogle Scholar
  5. Bouzar, H., Moore, L. W., & Schaad, N. W. (1983). Crown gall on pecan: A survey of Agrobacterium strains and potential for biological control in Georgia. Plant Disease, 67, 310–312.CrossRefGoogle Scholar
  6. Costechareyre, D., Rhouma, A., Lavire, C., Portier, P., Chapulliot, D., Bertolla, F., et al. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis. Microbial Ecology, 60(4), 862–872.PubMedCrossRefGoogle Scholar
  7. De Cleene, M., & De Ley, J. (1976). The host range of crown gall. The Botanical Review, 42, 389–466.CrossRefGoogle Scholar
  8. Eskandari, F., Bruckart, W. L., Schaad, N. W., Sechler, A. J., Postnikova, E. N., Caesar, A. J., et al. (2008). First report of crown gall caused by Agrobacterium sp. on diffuse knapweed (Centaurea diffusa). Plant Disease, 92, 487.CrossRefGoogle Scholar
  9. Hampl, V., Pavlícek, A., & Flegr, J. (2001). Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology, 51, 731–735.PubMedCrossRefGoogle Scholar
  10. Irelan, N. A., & Meredith, C. P. (1996). Genetic analysis of Agrobacterium tumefaciens and A. vitis using randomly amplified polymorphic DNA. American Journal of Enology and Viticulture, 47, 145–151.Google Scholar
  11. Keane, P. J., Kerr, A., & New, P. B. (1970). Crown gall of stone fruit. II Identification and nomenclature of Agrobacterium isolates. Australian Journal of Biological Sciences, 23, 585–595.Google Scholar
  12. Kerr, A., Manigault, P., & Tempé, J. (1977). Transfer of virulence in vivo and in vitro in Agrobacterium. Nature, 265, 560–561.PubMedCrossRefGoogle Scholar
  13. Llop, P., Lastra, B., Marsal, H., Murillo, J., & López, M. M. (2003). Tracking Agrobacterium strains by a RAPD system to identify single colonies from plant tumours. European Journal of Plant Pathology, 109, 381–389.CrossRefGoogle Scholar
  14. Lopez, M. M., Gorris, M. T., & Montojo, A. M. (1988). Opine utilization by Spanish isolates of Agrobacterium tumefaciens. Plant Pathology, 37, 565–572.CrossRefGoogle Scholar
  15. Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P., & Willems, A. (2008). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). International Journal of Systematic and Evolutionary Microbiology, 58, 200–214.PubMedCrossRefGoogle Scholar
  16. Moore, L. W., Kado, C. I., & Bouzar, H. (2001). II Gram-negative bacteria A, Agrobacterium. In N. W. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (3rd ed., pp. 17–35). St. Paul: American Phytopathological Society.Google Scholar
  17. Nesme, X., Michel, M.-F., & Digat, B. (1987). Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Applied and Environmental Microbiology, 53, 655–659.PubMedGoogle Scholar
  18. Panagopoulos, C. G., & Psallidas, P. G. (1973). Characteristics of Greek isolates of Agrobacterium tumefaciens (E.F. Smith & Townsend) Conn. Journal of Applied Bacteriology, 36, 233–240.PubMedCrossRefGoogle Scholar
  19. Penyalver, R., Sanchez, J. J., Petit, A., Salcedo, C. I., & Lopez, M. M. (2004). Tumorigenic Agrobacterium sp isolated from weeping fig in Spain. Plant Disease, 88, 428.CrossRefGoogle Scholar
  20. Popoff, M. Y., Kersters, K., Kiredijan, M., Miras, I., & Coynault, C. (1984). Position taxonomique de souches de Agrobacterium d’origine hospitaliére. Annals of Microbiology (Institut Pasteur), 135A, 427–442 (in French).CrossRefGoogle Scholar
  21. Portier, P., Fischer-Le Saux, M., Mougel, C., Lerondelle, C., Chapulliot, D., Thioulouse, J., et al. (2006). Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Applied and Environmental Microbiology, 72, 7123–7131.PubMedCrossRefGoogle Scholar
  22. Puławska, J. (2010). Crown gall of stone fruits and nuts—economic significance and diversity of its causal agent—tumorigenic Agrobacterium spp. Journal of Plant Pathology, 92(Suppl.1), S1.87–98.Google Scholar
  23. Puławska, J., & Sobiczewski, P. (2005). Development of a semi-nested PCR based method for sensitive detection of tumorigenic Agrobacterium in soil. Journal of Applied Microbiology, 98, 710–721.PubMedCrossRefGoogle Scholar
  24. Puławska, J., Maes, M., Willems, A., & Sobiczewski, P. (2000). Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium, Rhizobium and Sinorhizobium strains. Systematic and Applied Microbiology, 23, 238–244.PubMedCrossRefGoogle Scholar
  25. Puławska, J., Kielak, K., & Sobiczewski, P. (2006a). Study of phenotypic and genetic diversity of selected Polish Erwinia amylovora strains. Acta Horticulturae, 704, 439–444.Google Scholar
  26. Puławska, J., Willems, A., & Sobiczewski, P. (2006b). Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR. Systematic and Applied Microbiology, 29, 470–479.CrossRefGoogle Scholar
  27. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedGoogle Scholar
  28. Sawada, H., Ieki, H., Oyaizu, H., & Matsumoto, S. (1993). Proposal for rejection of Agrobacterium tumefaciens and revised description for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. International Journal of Systematic Bacteriology, 43, 694–702.PubMedCrossRefGoogle Scholar
  29. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., et al. (2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 52, 1043–1047.PubMedCrossRefGoogle Scholar
  30. Süle, S. (1978). Biotypes of Agrobacterium tumefaciens in Hungary. Journal of Applied Bacteriology, 44, 207–213.CrossRefGoogle Scholar
  31. Süß, J., Schubert, K., Sass, H., Cypionka, H., Overmann, J., & Engelen, B. (2006). Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environmental Microbiology, 8(10), 1753–1763.PubMedCrossRefGoogle Scholar
  32. Vinuesa, P., Silva, C., Lorite, M. J., Izaguirre-Mayoral, M. L., Bedmar, E. J., & Martinez-Romero, E. (2005). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Systematic and Applied Microbiology, 28, 702–716.PubMedCrossRefGoogle Scholar
  33. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.PubMedGoogle Scholar
  34. Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.PubMedCrossRefGoogle Scholar
  35. Willems, A., & Collins, M. D. (1993). Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 43, 305–313.PubMedCrossRefGoogle Scholar
  36. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.PubMedCrossRefGoogle Scholar
  37. Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 61(3), 1104–1109.PubMedGoogle Scholar
  38. Young, J. M., Kuykendall, L. D., Martinez-Romero, E., Kerr, A., & Sawada, H. (2001). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology, 51, 89–103.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  1. 1.Research Institute of Horticulture, Pomology DivisionSkierniewicePoland

Personalised recommendations