Skip to main content
Log in

Phylogenetic relationship and genetic diversity of Agrobacterium spp. isolated in Poland based on gyrB gene sequence analysis and RAPD

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The genetic diversity of 47 strains of Agrobacterium originating from different host plants and geographical locations in Poland, together with 12 strains from other countries was investigated. It was analyzed using RFLP of DNA fragment amplified with primers UP-1 and UP-2r flanking part of gyrB and parE genes, gyrB sequencing and randomly amplified polymorphic DNA (RAPD) technique. On the basis of obtained results, we found the majority of agrobacteria isolated in Poland belong to biovar 2. However, among others, three strains distinct from type strains of all the known Agrobacterium species, were discovered. All three methods showed no correlation between genetic diversity and geographical origin or the host plant of all studied strains but they revealed high diversity of the tested agrobacteria. The highest diversity was observed within strains of biovar 1, whereas those of biovar 2 were found to be the more homogenous group. The topology of the constructed gyrB tree corresponds to topologies of 16S and 23S rDNA trees obtained in this and other studies, but the gyrB tree had deeper branching. In the case of RAPD, it was possible to find a unique DNA fingerprint for almost each strain tested. The gyrB gene appeared to be a good phylogenetic marker with high discrimination power allowing better differentiation between species and strains, whereas the RAPD technique can serve as a tool for single strain typing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alconero, R. (1980). Crown gall of peaches from Maryland, South Carolina, and Tennessee and problems with biological control. Plant Disease, 64, 835–838.

    Article  Google Scholar 

  • Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25, 4692–4693.

    Article  PubMed  CAS  Google Scholar 

  • Bouzar, H., & Jones, J. B. (2001). Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. International Journal of Systematic and Evolutionary Microbiology, 51, 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  • Bouzar, H., & Moore, L. W. (1987). Isolation of different Agrobacterium biovars from a natural oak savanna and tallgrass prairie. Applied and Environmental Microbiology, 53, 717–721.

    PubMed  CAS  Google Scholar 

  • Bouzar, H., Moore, L. W., & Schaad, N. W. (1983). Crown gall on pecan: A survey of Agrobacterium strains and potential for biological control in Georgia. Plant Disease, 67, 310–312.

    Article  Google Scholar 

  • Costechareyre, D., Rhouma, A., Lavire, C., Portier, P., Chapulliot, D., Bertolla, F., et al. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis. Microbial Ecology, 60(4), 862–872.

    Article  PubMed  CAS  Google Scholar 

  • De Cleene, M., & De Ley, J. (1976). The host range of crown gall. The Botanical Review, 42, 389–466.

    Article  Google Scholar 

  • Eskandari, F., Bruckart, W. L., Schaad, N. W., Sechler, A. J., Postnikova, E. N., Caesar, A. J., et al. (2008). First report of crown gall caused by Agrobacterium sp. on diffuse knapweed (Centaurea diffusa). Plant Disease, 92, 487.

    Article  Google Scholar 

  • Hampl, V., Pavlícek, A., & Flegr, J. (2001). Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology, 51, 731–735.

    Article  PubMed  CAS  Google Scholar 

  • Irelan, N. A., & Meredith, C. P. (1996). Genetic analysis of Agrobacterium tumefaciens and A. vitis using randomly amplified polymorphic DNA. American Journal of Enology and Viticulture, 47, 145–151.

    CAS  Google Scholar 

  • Keane, P. J., Kerr, A., & New, P. B. (1970). Crown gall of stone fruit. II Identification and nomenclature of Agrobacterium isolates. Australian Journal of Biological Sciences, 23, 585–595.

    Google Scholar 

  • Kerr, A., Manigault, P., & Tempé, J. (1977). Transfer of virulence in vivo and in vitro in Agrobacterium. Nature, 265, 560–561.

    Article  PubMed  CAS  Google Scholar 

  • Llop, P., Lastra, B., Marsal, H., Murillo, J., & López, M. M. (2003). Tracking Agrobacterium strains by a RAPD system to identify single colonies from plant tumours. European Journal of Plant Pathology, 109, 381–389.

    Article  CAS  Google Scholar 

  • Lopez, M. M., Gorris, M. T., & Montojo, A. M. (1988). Opine utilization by Spanish isolates of Agrobacterium tumefaciens. Plant Pathology, 37, 565–572.

    Article  CAS  Google Scholar 

  • Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P., & Willems, A. (2008). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). International Journal of Systematic and Evolutionary Microbiology, 58, 200–214.

    Article  PubMed  CAS  Google Scholar 

  • Moore, L. W., Kado, C. I., & Bouzar, H. (2001). II Gram-negative bacteria A, Agrobacterium. In N. W. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (3rd ed., pp. 17–35). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Nesme, X., Michel, M.-F., & Digat, B. (1987). Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Applied and Environmental Microbiology, 53, 655–659.

    PubMed  CAS  Google Scholar 

  • Panagopoulos, C. G., & Psallidas, P. G. (1973). Characteristics of Greek isolates of Agrobacterium tumefaciens (E.F. Smith & Townsend) Conn. Journal of Applied Bacteriology, 36, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Penyalver, R., Sanchez, J. J., Petit, A., Salcedo, C. I., & Lopez, M. M. (2004). Tumorigenic Agrobacterium sp isolated from weeping fig in Spain. Plant Disease, 88, 428.

    Article  Google Scholar 

  • Popoff, M. Y., Kersters, K., Kiredijan, M., Miras, I., & Coynault, C. (1984). Position taxonomique de souches de Agrobacterium d’origine hospitaliére. Annals of Microbiology (Institut Pasteur), 135A, 427–442 (in French).

    Article  CAS  Google Scholar 

  • Portier, P., Fischer-Le Saux, M., Mougel, C., Lerondelle, C., Chapulliot, D., Thioulouse, J., et al. (2006). Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Applied and Environmental Microbiology, 72, 7123–7131.

    Article  PubMed  CAS  Google Scholar 

  • Puławska, J. (2010). Crown gall of stone fruits and nuts—economic significance and diversity of its causal agent—tumorigenic Agrobacterium spp. Journal of Plant Pathology, 92(Suppl.1), S1.87–98.

    Google Scholar 

  • Puławska, J., & Sobiczewski, P. (2005). Development of a semi-nested PCR based method for sensitive detection of tumorigenic Agrobacterium in soil. Journal of Applied Microbiology, 98, 710–721.

    Article  PubMed  Google Scholar 

  • Puławska, J., Maes, M., Willems, A., & Sobiczewski, P. (2000). Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium, Rhizobium and Sinorhizobium strains. Systematic and Applied Microbiology, 23, 238–244.

    Article  PubMed  Google Scholar 

  • Puławska, J., Kielak, K., & Sobiczewski, P. (2006a). Study of phenotypic and genetic diversity of selected Polish Erwinia amylovora strains. Acta Horticulturae, 704, 439–444.

    Google Scholar 

  • Puławska, J., Willems, A., & Sobiczewski, P. (2006b). Rapid and specific identification of four Agrobacterium species and biovars using multiplex PCR. Systematic and Applied Microbiology, 29, 470–479.

    Article  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sawada, H., Ieki, H., Oyaizu, H., & Matsumoto, S. (1993). Proposal for rejection of Agrobacterium tumefaciens and revised description for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. International Journal of Systematic Bacteriology, 43, 694–702.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., et al. (2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 52, 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Süle, S. (1978). Biotypes of Agrobacterium tumefaciens in Hungary. Journal of Applied Bacteriology, 44, 207–213.

    Article  Google Scholar 

  • Süß, J., Schubert, K., Sass, H., Cypionka, H., Overmann, J., & Engelen, B. (2006). Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environmental Microbiology, 8(10), 1753–1763.

    Article  PubMed  Google Scholar 

  • Vinuesa, P., Silva, C., Lorite, M. J., Izaguirre-Mayoral, M. L., Bedmar, E. J., & Martinez-Romero, E. (2005). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Systematic and Applied Microbiology, 28, 702–716.

    Article  PubMed  CAS  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    PubMed  CAS  Google Scholar 

  • Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  • Willems, A., & Collins, M. D. (1993). Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 43, 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 61(3), 1104–1109.

    PubMed  CAS  Google Scholar 

  • Young, J. M., Kuykendall, L. D., Martinez-Romero, E., Kerr, A., & Sawada, H. (2001). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology, 51, 89–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors wishes to thank: Noëlle Amarger (INRA, France), Xavier Nesme (University of Lyon, France), Esperanza Martinez Romero (CCG, Mexico), Xinhua Sui (ChAU, China), Marta Zawadzka (IH, Poland) for providing bacterial strains. This work was partly supported by the Polish Scientific Committee (KBN) Grant 580/E-177/SPB/COST/P-06/DZ 447/2002-2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Puławska.

Additional information

Nucleotide sequence data reported are available in GenBank database under the accession numbers: HQ438203-HQ438240 and FR828327-FR828343.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puławska, J., Kałużna, M. Phylogenetic relationship and genetic diversity of Agrobacterium spp. isolated in Poland based on gyrB gene sequence analysis and RAPD. Eur J Plant Pathol 133, 379–390 (2012). https://doi.org/10.1007/s10658-011-9911-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9911-2

Keywords

Navigation