European Journal of Plant Pathology

, Volume 132, Issue 4, pp 477–482 | Cite as

Small cardamom (Elettaria cardamomum Maton.) and ginger (Zingiber officinale Roxb) bacterial wilt is caused by same strain of Ralstonia solanacearum: a result revealed by multilocus sequence typing (MLST)

  • A. Kumar
  • T. P. Prameela
  • R. Suseela Bhai
  • A. Siljo
  • C. N. Biju
  • M. Anandaraj
  • B. A. Vinatzer


Bacterial wilt in cardamom (Elettaria cardamomum Maton) was observed in Kerala state of India. Infected plants showed wilting wherein all leaves roll or curl upward towards the midrib centre, turn yellow, and the whole plant finally dies; the collar region shows water-soaked lesions initially and turns dark brown eventually; copious quantity of bacterial exudate is observed on the cut end of the pseudostem. The bacterium was identified as Ralstonia solanacearum based on a panel of phenotypic characters such as fluidal white colony on Kelman’s medium, biovar assay and biolog assay (BiologGN), and genotypic characters such as Multiplex-PCR based phylotyping, sequences of 16S rDNA, 16-23S intergenic region, and recN gene. Collectively these tests revealed that the R. solanacearum infecting cardamom belong to biovar 3 and phylotype 1 confirming its Asian origin. Upon soil inoculation, the bacterium caused typical wilting of the cardamom plants in three weeks and ginger plantlets in two weeks. Cross transmissibility of the bacterium was observed in cardamom and ginger wherein the plants succumbed to wilt when R. solanacearum from either of the host was inoculated. BOX-PCR fingerprinting revealed that the strain is identical (100%) to a ginger strain of R. solanacearum, which is widely prevalent in the Indian sub-continent. Furthermore, Multilocus Sequence Typing (MLST) based strain comparison confirmed that cardamom and ginger strain were identical to each other at 11 loci. Apart from striking phenotypic and genotypic (allelic) similarities, geographical origin, and cross transmissibility of the cardamom strain of R. solanacearum strongly suggest that the new occurrence of wilt of cardamom in India could have an origin in bacterial wilt of ginger. Perusal of records on Ralstonia-induced bacterial wilt in crop plants, particularly among the Zingiberaceae family, reveals that this is a new report of bacterial wilt disease in small cardamom.


eBurst Ginger recPhylotyping Solanaceae Zingiberaceae 



The project was supported by National network project on Phytophthora, Fusarium and Ralstonia diseases of horticultural and field crops (PhytoFuRa). Various facilities provided by Directors, IISR, Calicut & Director, IARI, New Delhi and Heads, Division of Crop Protection & Division of Plant Pathology, IARI, New Delhi are thankfully acknowledged. We are grateful to Prof. A.C. Hayward, Queensland, Australia for critical comments and suggestion on the manuscript.

Supplementary material

10658_2011_9903_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)


  1. Altschul, S. F., Thomas, L. M., Alejandro, A. S., Jinghui, Z., Zheng, Z., Webb, M., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.PubMedCrossRefGoogle Scholar
  2. Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., et al. (2010). PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100(3), 208–215.PubMedCrossRefGoogle Scholar
  3. Aragaki, M., & Quinon, V. L. (1965). Bacterial wilt of ornamental gingers (Hedychium spp) caused by Pseudomonas solanacearum. Plant Disease Reporter, 49, 378–379.Google Scholar
  4. Castillo, J. A., & Greenberg, J. T. (2007). Evolutionary dynamics of Ralstonia solanacearum. Applied and Environmental Microbiology, 73, 1225–1238.PubMedCrossRefGoogle Scholar
  5. Fegan, M., & Prior, P. (2005). How complex is the Ralstonia solanacearum species complex? In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex (pp. 449–461). St. Paul: APS Press.Google Scholar
  6. Feil, E. J., Li, B. C., Aanensen, D. M., Hanage, W. P., & Spratt, B. G. (2004). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of Bacteriology, 186(5), 1518–1530.PubMedCrossRefGoogle Scholar
  7. Hayward, A. C. (1964). Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology, 27, 265–277.CrossRefGoogle Scholar
  8. Hayward, A. C., Moffett, M. L., & Pegg, K. G. (1967). Bacterial wilt of ginger in Queensland. Queensland Journal of Agriculture & Animal Sciences, 24, 1–5.Google Scholar
  9. He, L. Y. (1986). Bacterial wilt in the People’s Republic of China. In G. J. Persley (ed.), Bacterial wilt disease in Asia and the South Pacific. (pp. 40–48). ACIAR Proceedings ACIAR, Canberra, Australia.Google Scholar
  10. Kumar, A., & Hayward, A. C. (2005). Bacterial diseases of ginger and their control. In P. N. Ravindran & K. N. Babu (Eds.), Ginger- the genus Zingiber (pp. 341–366). USA: CRC Press.Google Scholar
  11. Kumar, A., & Sarma, Y. R. (2004). Characterization of Ralstonia solanacearum causing bacterial wilt of ginger in India. Indian Phytopathology, 57, 12–17.Google Scholar
  12. Kumar, A., Sarma, Y. R., & Anandaraj, M. (2004). Evaluation genetic diversity of Ralstonia solanacearum causing bacterial wilt of ginger using Rep-PCR and RFLP-PCR. Current Science, 87(11), 1555–1561.Google Scholar
  13. Kumar, A., Bhai, R. S., Sasikumar, B., Anandaraj, M., & Parthasarathy, V. A. (2006). Curcuma amada Roxb. a bacterial wilt evading species in Zingiberaceae: a potential source for valuable genes for bacterial wilt resistance. In G. Saddler, J. Elphinstone, & J. Smith (Eds.), Absracts of 4 th International Bacterial Wilt Symposium (p. 85). York: CSL.Google Scholar
  14. Lum, K. Y. (1973). Cross inoculation studies of Pseudomonas solanacearum from ginger. MARDI Research Bulletin, 1, 15–21.Google Scholar
  15. Opina, N., Tavner, F., Holloway, G., Wang, J. F., Li, T. H., Maghirang, R., et al. (1997). A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum). Asia Pacific Journal of Molecular Biology and Biotechnology, 5, 19–33.Google Scholar
  16. Orian, G. (1953). Botanical Division Report, Department of Agriculture, Mauritius, 37–40.Google Scholar
  17. Pavlicek, A., Hrda, S., & Flegr, J. (1999). FreeTree-Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biologica (Praha), 45, 97–99.Google Scholar
  18. Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., & Trigalet, A. (2000). Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology, 146, 1679–1692.PubMedGoogle Scholar
  19. Quinon, V. L., Aragaki, M., & Ishii, M. (1964). Pathogenicity and serological relationship of three strains of Pseudomonas solanacearum in Hawaii. Phytopathology, 54, 1096–9.Google Scholar
  20. Rademaker, J. L. W., Louws, F. J., & de Bruijn, F. J. (1997). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In A. D. L. Akkermans, J. D. Van Elsas, & J. D. De Bruijn (Eds.), Molecular microbial ecology manual, supplement 3, chapter 3.4.3 (pp. 1–26). Dordrecht: Kluwer Academic Publishers.Google Scholar
  21. Ren, X. Z., Wei, G., Qi, Q. S., & Fang, Z. D. (1981). Comparative studies of isolates of Pseudomonas solanacearum Smith from different host plants. Acta Phytopathologica Sinica, 11, 1–8.Google Scholar
  22. Spratt, B. G., Hanage, W. P., Li, B., Aanensen, D. M., & Feil, E. J. (2004). Displaying the relatedness among isolates of bacterial species -the eBURST approach. FEMS Microbiology Letters, 241(2), 129–34.PubMedCrossRefGoogle Scholar
  23. Taghavi, M., Hayward, C., Sly, L. I., & Fegan, M. (1996). Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the Blood Disease Bacterium of banana based on 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 46, 10–15.PubMedCrossRefGoogle Scholar
  24. Titatarn, V. (1986). Bacterial wilt in Thailand Bacterial wilt disease in Asia and the South Pacific. ACIAR Proceedings ACIAR, Canberra, Australia, 13, 64–67.Google Scholar
  25. Tsuchiya, K., Yano, K., Horita, M., Morita, Y., Kawada, Y., & d’Ursel, C. M. (2005). Occurrence and epidemic adaptation of new strains of Ralstonia solanacearum associated with Zingiberaceae plants under agro-ecosystem in Japan. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex (pp. 463–469). APS Press: St. Paul.Google Scholar
  26. Velupillai, M. (1986). Bacterial wilt in Sri Lanka. Bacterial wilt disease in Asia and the South Pacific. ACIAR Proceedings, ACIAR, Canberra, Australia. 13, 57–64.Google Scholar
  27. Zehr, E. I. (1970). Cultural, physiological and biochemical properties of isolates to Philippine Pseudomonas solanacearum. Philippine Phytopathology, 6, 29–43.Google Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • A. Kumar
    • 1
  • T. P. Prameela
    • 2
  • R. Suseela Bhai
    • 2
  • A. Siljo
    • 2
  • C. N. Biju
    • 3
  • M. Anandaraj
    • 2
  • B. A. Vinatzer
    • 4
  1. 1.Division of Plant PathologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of Crop ProtectionIndian Institute of Spices ResearchCalicutIndia
  3. 3.Cardamom Research CenterIndian Institute of Spices ResearchAppangalaIndia
  4. 4.551 Latham Hall (0390) Virginia TechBlacksburgUSA

Personalised recommendations