Skip to main content
Log in

Frequency of mutations associated with fungicide resistance and population structure of Mycosphaerella graminicola in Tunisia

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The occurrence of fungicide resistance in Mycosphaerella graminicola populations from Tunisia was investigated by examining mutations known to be associated with strobilurin and azole resistance. Few mutations associated with fungicide resistance were detected. No evidence for strobilurin resistance was found among 357 Tunisian isolates and only two among 80 sequenced isolates carried mutations associated with azole resistance. A network analysis suggested that these mutations emerged independently from mutations found in previously described European populations. The population genetic structure of M. graminicola in Tunisia was analyzed using variation at 11 microsatellite loci. Populations in Tunisia were characterized by high gene and genotype diversity. All populations were in gametic equilibrium and mating type proportions did not deviate from the 1:1 ratio expected under random mating, consistent with regular cycles of sexual reproduction. In combination with a high degree of gene flow among sampling sites, M. graminicola must be considered a pathogens with high evolutionary potential. Thus, control strategies against Septoria blotch in Tunisia should be optimized to reduce the emergence and spread of resistant isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrinbana, M., Mozafari, J., Shams-bakhsh, M., & Mehrabi, R. (2010). Genetic structure of Mycosphaerella graminicola populations in Iran. Plant Pathology, 59, 829–838.

    Article  Google Scholar 

  • Agapow, P. M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1, 101–102.

    Article  CAS  Google Scholar 

  • Asmussen, M. A., & Basten, J. C. (1994). Sampling theory for cyto-nuclear disequilibria. Genetics, 138, 1351–1363.

    PubMed  CAS  Google Scholar 

  • Bakun, A., & Agostini, V. N. (2001). Seasonal patterns of wind-induced upwelling/ downwelling in the Mediterranean Sea. Scientia Marina, 65, 243–257.

    Article  Google Scholar 

  • Balloux, F., & Lugon-Moulin, N. (2002). The estimation of population differentiation with microsatellite markers. Molecular Ecology, 11, 155–165.

    Article  PubMed  Google Scholar 

  • Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.

    PubMed  CAS  Google Scholar 

  • Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, P. C., Stefanato, F. L., & McDonald, B. A. (2008). Evolution of the CYP51 gene in Mycosphaerella graminicola: evidence for intragenic recombination and selective replacement. Molecular Plant Pathology, 9, 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. J., Delmotte, F., Richard-Cervera, S., Douence, L., Greif, C., & Corio-Coset, M. F. (2007). At least two origins of fungicide resistance in grapevine downy mildew populations. Applied and Environmental Microbiology, 73, 5162–5172.

    Article  PubMed  CAS  Google Scholar 

  • Cools, H. J., & Fraaije, B. A. (2008). Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola. Pest Management Science, 64, 681–684.

    Article  PubMed  CAS  Google Scholar 

  • Cools, H. J., Parker, J. E., Kelly, D. E., Lucas, J. A., Fraaije, B. A., & Kelly, S. L. (2010). Heterologous expression of mutated eburicol 14α-demethylase (CYP51) proteins of Mycosphaerella graminicola to assess effects on azole fungicide sensitivity and intrinsic protein function. Applied and Environmental Microbiology, 76, 2866–2872.

    Article  PubMed  CAS  Google Scholar 

  • Corander, J., & Marttinen, P. (2006). Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology, 15, 2833–2843.

    Article  PubMed  Google Scholar 

  • Corander, J., Marttinen, P., Siren, J., & Tang, J. (2008). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 9, 539.

    Article  PubMed  Google Scholar 

  • Delport, W., Poon, A. F., Frost, S. D. W., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26, 2455–2457.

    Article  PubMed  CAS  Google Scholar 

  • El Chartouni, L., Tisserant, B., Siah, A., Duyme, F., Leducq, J. B., Deweer, C., Fichter-Roisin, C., Sanssené, J., Durand, R., Halama, P., & Reignault, P. (2011). Genetic diversity and population structure in French populations of Mycosphaerella graminicola. Mycologia, 103, 764–774.

    Article  PubMed  Google Scholar 

  • Eyal, Z., Scharen, A. L., Huffman, M. D., & Prescott, J. M. (1985). Global insights into virulence frequencies of Mycosphaerella graminicola. Phytopathology, 75, 1456–1462.

    Article  Google Scholar 

  • Fraaije, B. A., Cools, H. J., Fontaine, J., Lovell, D. J., Motteram, J., & West, J. S. (2005). Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola. Phytopathology, 95, 933–941.

    Article  PubMed  CAS  Google Scholar 

  • Fraaije, B. A., Cools, H. J., Kim, S. H., Motteram, J., Clark, W. S., & Lucas, J. A. (2007). A novel substitution I381V in the sterol 14-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Molecular Plant Pathology, 8, 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, S. B., Van Der Lee, T., Cavaletto, J. R., Hekkert, B., Crane, C. F., & Kema, G. H. J. (2007). Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola. Fungal Genetics and Biology, 44, 398–414.

    Article  PubMed  CAS  Google Scholar 

  • Goudet, J. (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) (Retrieved August 2009, from Lausanne University, Population Genetics Laboratory: http://wwwunilch/izea/softwares/fstathtml).

  • Kema, G. H. J., Annone, J. G., Sayoud, R., Van Silfhout, C. H., Van Ginkel, M., & de Bree, J. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathology, 86, 200–212.

    Article  Google Scholar 

  • Kosakovsky Pond, S. L., Frost, S. D. W., & Muse, S. V. (2005). HyPhy: hypothesis testing using phylogenies. Bioinformatics, 21, 676–679.

    Article  Google Scholar 

  • Leroux, P., Gredt, M., Walker, A. S., Moinard, J. M., & Caron, D. (2005). Resistance of the wheat leaf blotch pathogen Septoria tritici to fungicides in France. In H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and antifungal compounds, IV (pp. 115–124). Alton: BCPC.

    Google Scholar 

  • Leroux, P., Albertini, C., Gautier, A., Gredt, M., & Walker, A. S. (2007). Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science, 63, 688–698.

    Article  PubMed  CAS  Google Scholar 

  • Linde, C. C., Zhan, J., & McDonald, B. A. (2002). Population structure of Mycosphaerella graminicola: from lesions to continents. Phytopathology, 92, 946–955.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, B. A., & Linde, C. C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163–180.

    Article  CAS  Google Scholar 

  • McDonald, B. A., Zhan, J., & Burdon, J. J. (1999). Genetic structure of Rhynchosporium secalis in Australia. Phytopathology, 89, 639–645.

    Article  PubMed  CAS  Google Scholar 

  • Meirmans, P. G., & Van Tienderen, P. H. (2004). GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4, 792–794.

    Article  Google Scholar 

  • Mullins, J. G. L., Parker, J. E., Cools, H. J., Togawa, R. C., Lucas, J. A., Fraaije, B. A., et al. (2011). Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS ONE, 6(6), e20973.

    Article  PubMed  CAS  Google Scholar 

  • Oerke, E. C., Dehne, H. W., Schonbeck, F., & Weber, A. (1994). Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops (p. 808). Amsterdam: Elsevier Science.

  • Peakall, R., & Smouse, P. (2005) GenALEx 6: Genetic analysis in excel population genetic software for teaching and research. (Retrieved August 2009, from Australian National University, Research School of Biology: http://wwwanueduau/BoZo/GenAlEx/).

  • Petit, R. J., El Mousadik, A., & Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844–855.

    Article  Google Scholar 

  • Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). GeneClass2: a Software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95, 536–539.

    Article  PubMed  CAS  Google Scholar 

  • Posada, D., & Crandall, K. A. (2001). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proceedings of the National Academy of Sciences of the United States of America, 98, 13757–62.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    PubMed  CAS  Google Scholar 

  • Rannala, B., & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America, 98, 9197–9201.

    Article  Google Scholar 

  • Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248–249.

    Google Scholar 

  • Ruske, R. E., Gooding, M. J., & Jones, S. A. (2003). The effects of triazole and strobilurin fungicide programmes on nitrogen uptake, partitioning, remobilization and grain N accumulation in winter wheat cultivars. Journal of Agricultural Science, 140, 395–407.

    Article  CAS  Google Scholar 

  • Shaw, M. W., & Royle, D. J. (1989). Airborne inoculum as a major source of Septoria tritici (Mycosphaerella graminicola) infections in winter wheat crops in the UK. Plant Pathology, 38, 35–43.

    Article  Google Scholar 

  • Stammler, G., Kern, L., Semar, M., Glaettli, A., & Schoefl, U. (2008). Sensitivity of Mycosphaerella graminicola to DMI fungicides related to mutations in the target gene cyp51 (14α-demethylase). In H. W. Dehne, H. B. Deising, U. Gisi, K. H. Kuck, P. E. Russel, & H. Lyr (Eds.), Modern fungicides and antifungal compounds, V (pp. 137–142). Braunschweig: DPG-Verlag.

    Google Scholar 

  • Tang, J., Hanage, W. P., Fraser, C., & Corander, J. (2009). Identifying currents in the gene pool for bacterial populations using an integrative approach. PLoS Computational Biology, 5, e1000455.

    Article  PubMed  Google Scholar 

  • Torriani, S. F. F., Brunner, P. C., McDonald, B. A., & Sierotzki, H. (2009). QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Management Science, 65, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Torriani, S. F. F., Linde, C. C., & McDonald, B. A. (2009). Sequence conservation in the mitochondrial cytochrome b gene and lack of G143A Qol resistance allele in a global sample of Rhynchosporium secalis. Australasian Plant Pathology, 38, 202–207.

    Article  CAS  Google Scholar 

  • Torriani, S. F. F., Brunner, P. C., & McDonald, B. A. (2011). Evolutionary history of the mitochondrial genome in Mycosphaerella populations infecting bread wheat, durum wheat and wild grasses. Molecular Phylogenetics and Evolution, 58, 192–197.

    Article  PubMed  CAS  Google Scholar 

  • Waalwijk, C., Mendes, O., Verstappen, E. C. P., & Kema, G. H. J. (2002). Isolation and characterization of the mating-type idiomorphs from the wheat Septoria leaf blotch fungus Mycosphaerella graminicola. Fungal Genetics and Biology, 35, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, J., Kema, G. H. J., Waalwijk, C., & McDonald, B. A. (2002). Distribution of mating type alleles in the wheat pathogen Mycosphaerella graminicola over spatial scales from lesions to continents. Fungal Genetics and Biology, 36, 128–136.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, J., Pettway, R. E., & McDonald, B. A. (2003). The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genetics and Biology, 8, 286–297.

    Article  Google Scholar 

  • Zhan, J., Kema, G. H. J., & McDonald, B. A. (2004). Evidence for natural selection in the mitochondrial genome of Mycosphaerella graminicola. Phytopathology, 94, 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, J., Stefanato, F. L., & McDonald, B. A. (2006). Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Molecular Plant Pathology, 7, 259–268.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marcello Zala, Stefano Torriani, Megan McDonald and Joanna Bernardes de Assis for technical support and helpful discussions. The Genetic Diversity Center of ETH Zurich provided facilities for collecting molecular data. This project was supported by the Swiss government through the Federal Commission for Scholarships for Foreign Students (FCS; RefNr: 20080384) who sponsored SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Brunner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Geographic distribution of 24 observed CYP51 haplotypes in M. graminicola collected in Tunisia. (DOC 158 kb)

Supplementary Fig. S1

Nucleotide sequence variation from 1358 bp of the CYP51 gene from 80 M. graminicola isolates defining 24 distinct haplotypes. Sites are numbered according to their position in the reference sequence ST1 (GenBank accession AY730587). Small letters represent silent nucleotide variations and capital letters indicate variations that alter the amino acid composition. Resistant haplotypes are shaded in grey with the corresponding resistance mutations (see also Supplementary Table S1). (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukef, S., McDonald, B.A., Yahyaoui, A. et al. Frequency of mutations associated with fungicide resistance and population structure of Mycosphaerella graminicola in Tunisia. Eur J Plant Pathol 132, 111–122 (2012). https://doi.org/10.1007/s10658-011-9853-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9853-8

Keywords

Navigation