Influence of an m-type thioredoxin in maize on potyviral infection

  • Yan Shi
  • Yanhong Qin
  • Yanyong Cao
  • Hu Sun
  • Tao Zhou
  • Yiguo Hong
  • Zaifeng Fan


Expression of many host genes can be altered during virus infection. In a previous study of sugarcane mosaic virus (SCMV) infection in maize (Zea mays), we observed that expression of ZmTrm2, a gene encoding thioredoxin m, was up-regulated at about 10 days post-inoculation (dpi). In this present study we determined that ZmTrm2 silencing in maize by virus-induced gene silencing significantly enhanced systemic SCMV infection. In contrast transient over-expression of ZmTrm2 in maize protoplasts inhibited accumulation of SCMV viral RNA. Furthermore, we found that in inoculated Nicotiana tabacum leaves transient expression of ZmTrm2 inhibited accumulation of the RNA of tobacco vein-banding mosaic virus (TVBMV), a potyvirus infecting dicotyledonous plants. Interestingly in ZmTrm2 transiently expressed N. tabacum leaves, we detected by semi-quantitative RT-PCR a reduced level of the mRNA of class I beta-1, 3-glucanase (GluI), a protein known to have a role in cell wall callose deposition and viral movement. Our data indicate that the maize ZmTrm2 plays an inhibitory role during infection of plants by SCMV and TVBMV.


Zea mays ZmTrm2 SCMV TVBMV Potyvirus infection 



This work was supported by grants from the National Natural Science Foundation of China (30771404) and the Ministry of Agriculture of China (2008ZX08003-001; 2009ZX08003-011B). We thank Professor Richard Nelson (S. R. Noble Foundation) for providing us the infectious C-BMVA/G vector and Professors Jingrui Dai and Mingliang Xu (National Maize Improvement Center, CAU, Beijing) for providing us with maize seeds of inbred line Zong 31 and cv. Va35; and Dr Zhaoling Yan from our laboratory for technical assistance. We also thank Dr. Xin-Shun Ding (S. R. Noble Foundation) for helpful discussions and suggestions during preparation of the manuscript.


  1. Alfenas-Zerbini, P., Maria, I. G., Fávaro, R. D., Cascardo, J. C. M., Brommonschenkel, S. F., & Zerbini, F. M. (2009). Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Molecular Plant-Microbe Interactions, 22, 352–361.PubMedCrossRefGoogle Scholar
  2. Aslund, F., & Beckwith, J. (1999). Bridge over troubled waters: sensing stress by disulfide bond formation. Cell, 96, 751–753.PubMedCrossRefGoogle Scholar
  3. Balmer, Y., & Buchanan, B. B. (2002). Yet another plant thioredoxin. Trends in Plant Sciences, 7, 191–193.CrossRefGoogle Scholar
  4. Balmer, Y., Koller, A., del Val, G., Manieri, W., Schūrmann, P., & Buchanan, B. B. (2003). Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proceedings of the National Academy of Sciences. USA, 100, 370–375.CrossRefGoogle Scholar
  5. Bartsch, S., Monnet, J., Selbach, K., Quigley, F., Gray, J., von Wettstein, D., et al. (2008). Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proceedings of the National Academy of Sciences. USA, 105, 4933–4938.CrossRefGoogle Scholar
  6. Beffa, R. S., Hofer, R. M., Thomas, M., & Meins, F. (1996). Decreased susceptibility to virus disease of β-1,3-glucanase deficient plants generated by antisense transformation. Plant Cell, 8, 1001–1011.PubMedCrossRefGoogle Scholar
  7. Benitez-Alfonso, Y., Cilis, M., Roman, A. S., Thomas, C., Maule, A., Hearn, S., et al. (2009). Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proceedings of the National Academy of Sciences. USA, 106, 3615–3620.CrossRefGoogle Scholar
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of miceogram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefGoogle Scholar
  9. Chen, Z. R., Zhou, T., Wu, X. H., Hong, Y. G., Fan, Z. F., & Li, H. F. (2008). Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. Molecular Plant Pathology, 9, 809–817.PubMedCrossRefGoogle Scholar
  10. Chung, B. Y., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, USA, 105, 5897–5902.CrossRefGoogle Scholar
  11. Collazo, C., Ramos, P. L., Chacón, O., Borroto, C. J., López, Y., Pujol, M., et al. (2006). Phenotypical and molecular characterization of the Tomato mottle Taino virus–Nicotiana megalosiphon interaction. Physiological and Molecular Plant Pathology, 67, 231–236.CrossRefGoogle Scholar
  12. Dijkstra, J., & de Jager, C. P. (1998). Practical plant virology: protocols and exercises. Springer press (Springer lab manual) Berlin; Heidelberg; New York.Google Scholar
  13. Ding, X. S., Schneider, W. L., Chaluvadi, S. R., Mian, M. A. R., & Nelson, R. S. (2006). Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Molecular Plant-Microbe Interactions, 19, 1229–1239.PubMedCrossRefGoogle Scholar
  14. Eklund, H., Gleason, F. K., & Holmgren, A. (1991). Structural and functional relations among thioredoxins of different species. Proteins: Structure, Function, Genetics, 11, 13–28.CrossRefGoogle Scholar
  15. Escalettes, S. V., Hullot, C., Wawrzy'nczak, D., Mathieu, E., Eyquard, J., Le Gall, O., et al. (2006). Plum pox virus induces differential gene expression in the partially resistant stone fruit tree Prunus armeniaca cv. Goldrich. Gene, 374, 96–103.CrossRefGoogle Scholar
  16. Fan, Z., Chen, H., Liang, X., & Li, H. (2003). Complete sequence of the genomic RNA of the prevalent strain of a potyvirus infecting maize in China. Archives of Virology, 148, 773–782.PubMedCrossRefGoogle Scholar
  17. Geck, M. K., Larimer, F. W., & Hartman, F. C. (1996). Identification of residues of spinach thioredoxin f that influence interactions with target enzymes. The Journal of Biological Chemistry, 271, 24736–40.PubMedCrossRefGoogle Scholar
  18. Gelhaye, E., Rouhier, N., Gérard, J., Jolivet, Y., Gualberto, J., Navrot, N., et al. (2004). A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proceedings of the National Academy of Sciences, USA, 101, 14545–14550.CrossRefGoogle Scholar
  19. Hodges, M., Miginiac-Maslow, M., Decottignies, P., Jacquot, J. P., Stein, M., Lepiniec, L., et al. (1994). Purification and characterization of pea thioredoxin f expressed in Escherichia coli. Plant Molecular Biology, 26, 225–234.PubMedCrossRefGoogle Scholar
  20. Holmgren, A. (1985). Thioredoxins. Annual Review of Biochemistry, 54, 237–271.PubMedCrossRefGoogle Scholar
  21. Huang, T., Wei, T., Laliberté, J., & Wang, A. (2010). A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. Plant Physiology, 152, 255–266.PubMedCrossRefGoogle Scholar
  22. Iglesias, V. A., & Meins, F., Jr. (2000). Movement of plant viruses is delayed in a ß-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. The Plant Journal, 21, 157–166.PubMedCrossRefGoogle Scholar
  23. Ishiwatari, Y., Honda, C., Kawashima, I., Nakamura, S., Hirano, H., Mori, S. M., et al. (1995). Thioredoxin h is one of the major proteins in rice phloem sap. Planta, 195, 456–463.PubMedCrossRefGoogle Scholar
  24. Juárez-Diaz, J. A., McClure, B., Vázquez-Santana, S., Guevara-Garciá, A., León-Mejia, P., Márquez-Guzmán, J., et al. (2006). A novel thioredoxin h is secreted in Nicotiana alata and reduces S-RNase in vitro. The Journal of Biological Chemistry, 281, 3418–3424.PubMedCrossRefGoogle Scholar
  25. Lunn, J. E., Agostino, A., & Hatch, M. D. (1995). Regulation of NADP-malate dehydrogenase in C4 plants: activity and properties of maize thioredoxin m and the significance of non-active site thiol groups. Australian Journal of Plant Physiology, 22, 577–584.CrossRefGoogle Scholar
  26. Maule, A., Leh, V., & Lederer, C. (2002). The dialogue between viruses and hosts in compatible interactions. Current Opinion in Plant Biology, 5, 1–6.CrossRefGoogle Scholar
  27. Meyer, Y., Vignols, F., & Reichheld, J. P. (2002). Classification of plant thioredoxins by sequence similarity and intron position. Methods in Enzymology, 347, 394–402.PubMedCrossRefGoogle Scholar
  28. Meyer, Y., Reichheld, J. P., & Vignols, F. (2005). Thioredoxins in Arabidopsis and other plants. Photosynthesis Research, 86, 419–433.PubMedCrossRefGoogle Scholar
  29. Montrichard, F., Alkhalfioui, F., Yano, H., Vensel, W. H., Hurkman, W. J., & Buchanan, B. B. (2009). Thioredoxin targets in plants: The first 30 years. Journal of Proteomics, 72, 452–474.PubMedCrossRefGoogle Scholar
  30. Motohashi, K., Kondoh, A., Stumpp, M. T., & Hisabori, T. (2001). Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Sciences. USA, 98, 11224–11229.CrossRefGoogle Scholar
  31. Nishizawa, A. N., & Buchanan, B. B. (1981). Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphosphatase from corn leaves. The Journal of Biological Chemistry, 256, 6119–6126.PubMedGoogle Scholar
  32. Rivera-Madrid, R., Mestres, D., Marinho, P., Jacquot, J. P., Decottignies, P., Miginian-Maslow, M., et al. (1995). Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 92, 5620–5624.CrossRefGoogle Scholar
  33. Schwarz, O., SchuÈrmann, P., & Strotmann, H. (1997). Kinetics and thioredoxin specificity of thiol modulationof the chloroplast H + -ATPase. The Journal of Biological Chemistry, 272, 16924–16927.PubMedCrossRefGoogle Scholar
  34. Sheen, J. (1991). Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell, 3, 225–245.PubMedCrossRefGoogle Scholar
  35. Shi, C., Thümmer, F., Melchinger, A. E., Wenzel, G., & Lübberstedt, T. (2006). Comparison of transcript profiles between near-isogenic maize lines in association with SCMV resistance based on unigene-microarrays. Plant Science, 170, 159–169.CrossRefGoogle Scholar
  36. Thompson, D., & Larson, G. (1992). Western blots using stained protein gels. Biotechniques, 12, 656–658.PubMedGoogle Scholar
  37. Użarowska, A., Dionisio, G., Sarholz, B., Piepho, H., Xu, M., Ingvardsen, C. R., et al. (2009). Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC Plant Biology, 9, 15.PubMedCrossRefGoogle Scholar
  38. van der Linde, K., Kastner, C., Kumlehn, J., Kahmann, R., & Doehlemann, G. (2011). Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytologist, 189, 471–483.PubMedCrossRefGoogle Scholar
  39. van Wezel, R., Dong, X. L., Blake, P., Stanley, J., & Hong, Y. G. (2002). Differential roles of geminivirus Rep and AC4(C4) in the induction of necrosis in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 3, 461–471.Google Scholar
  40. Wenderoth, I., Scheibe, R., & von Schaewen, A. (1997). Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. The Journal of Biological Chemistry, 272, 26985–26990.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • Yan Shi
    • 1
    • 2
  • Yanhong Qin
    • 1
    • 3
  • Yanyong Cao
    • 1
  • Hu Sun
    • 3
  • Tao Zhou
    • 1
  • Yiguo Hong
    • 4
  • Zaifeng Fan
    • 1
  1. 1.State Key Laboratory of Agrobiotechnology and Department of Plant PathologyChina Agricultural UniversityBeijingChina
  2. 2.College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
  3. 3.Plant Protection InstituteHenan Academy of Agricultural SciencesZhengzhouChina
  4. 4.Warwick-HRIUniversity of WarwickWarwickUK

Personalised recommendations