Skip to main content
Log in

Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Begomovirus infection was suspected in tomato plants exhibiting symptoms of curling and deformation of leaves observed in a survey conducted in northern and central Peru. Rolling circle amplification and restriction fragment length polymorphism analyses suggested that a begomovirus was present in symptomatic plants. The full-length sequence of a begomovirus DNA component was determined, comprising 2591 nucleotides. Based on its genome organization, we suggest it corresponds to the DNA-A of a New World begomovirus. Less than 89% nucleotide sequence identity to known begomoviruses was found, indicating that it corresponds to an isolate of a distinct begomovirus species for which the name tomato leaf deformation virus (ToLDeV) is proposed. Different stretches of the genomic component have the highest sequence identity with different viruses compatible with a recombinant origin. Sequence segments shared common ancestors with isolates of either soybean blistering mosaic virus, tomato yellow spot virus, or tomato chino La Paz virus. Partial sequence analysis of begomovirus isolates present in symptomatic tomato samples collected in northern and central Peru suggested widespread occurrence of this new begomovirus. This is the first confirmation of a begomovirus infection in tomatoes in Peru.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Argüello-Astorga, G. R., & Ruiz-Medrano, R. (2001). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Archives of Virology, 146, 1465–1485.

    Article  PubMed  Google Scholar 

  • Duffy, S., & Holmes, E. C. (2007). Multiple introductions of the Old World begomovirus tomato yellow leaf curl virus into the New World. Applied and Environmental Microbiology, 73, 7114–7117.

    Article  CAS  PubMed  Google Scholar 

  • Fargette, D., Konaté, G., Fauquet, C., Muller, E., Peterschmitt, M., & Thresh, J. M. (2006). Molecular ecology and emergence of tropical plant viruses. Annual Review of Phytopathology, 44, 235–260.

    Article  CAS  PubMed  Google Scholar 

  • Fauquet, C. M., & Stanley, J. (2005). Revising the way we conceive and name viruses below the species level: a review of geminivirus taxonomy calls for new standardized isolate descriptors. Archives of Virology, 150, 2151–2179.

    Article  CAS  PubMed  Google Scholar 

  • Fauquet, C., Briddon, R., Brown, J., Moriones, E., Stanley, J., Zerbini, M., et al. (2008). Geminivirus strain demarcation and nomenclature. Archives of Virology, 153, 783–821.

    Article  CAS  PubMed  Google Scholar 

  • Fiallo-Olivé, E., Martínez-Zubiaur, Y., & Rivera-Bustamante, R. F. (2009). Tomato yellow leaf distortion virus, a new bipartite begomovirus infecting tomato in Cuba. Plant Pathology, 58, 785.

    Google Scholar 

  • Fourment, M., Gibbs, A. J., & Gibbs, M. J. (2008). SWeBLAST: a sliding window web-based BLAST tool for recombinant analysis. Journal of Virological Methods, 152, 98–101.

    Article  CAS  PubMed  Google Scholar 

  • Galvao, R. M., Mariano, A. C., Luz, D. F., Alfenas, P. F., Andrade, E. C., Zerbini, F. M., et al. (2003). A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically. The Journal of General Virology, 84, 715–726.

    Article  CAS  PubMed  Google Scholar 

  • Haible, D., Kober, S., & Jeske, H. (2006). Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. Journal of Virological Methods, 135, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Idris, A. M., & Brown, J. K. (1998). Sinaloa tomato leaf curl geminivirus: biological and molecular evidence for a new subgroup III virus. Phytopathology, 88, 648–657.

    Article  CAS  PubMed  Google Scholar 

  • Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B., & Nagata, T. (2004). A simple method for cloning the complete begomovirus genome using the bacteriophage Φ29 DNA polymerase. Journal of Virological Methods, 116, 209–211.

    Article  CAS  PubMed  Google Scholar 

  • Jeske, H. (2007). Replication of geminiviruses and the use of rolling circle amplification for their diagnosis. In H. Czosnek (Ed.), Tomato yellow leaf curl virus disease management, molecular biology, breeding for resistance (pp. 141–156). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Jeske, H. (2009). Geminiviruses. Current Topics in Microbiology and Immunology, 331, 185–226.

    Article  CAS  PubMed  Google Scholar 

  • Mansoor, S., Zafar, Y., & Briddon, R. W. (2006). Geminivirus disease complexes: the threat is spreading. Trends in Plant Science, 11, 209–212.

    Article  CAS  PubMed  Google Scholar 

  • Martin, D. P., Van der Walt, E., Posada, D., & Rybicki, E. P. (2005a). The evolutionary value of recombination is constrained by genome modularity. PLoS Genetics, 1, 475–479.

    Article  CAS  Google Scholar 

  • Martin, D. P., Williamson, C., & Posada, D. (2005b). RDP2: recombination detection and analysis from sequence alignments. Bioinformatics, 21, 260–262.

    Article  CAS  PubMed  Google Scholar 

  • Morales, F. J., & Anderson, P. K. (2001). The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Archives of Virology, 146, 415–441.

    Article  CAS  PubMed  Google Scholar 

  • Moriones, E., & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 71, 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Moriones, E., García-Andrés, S., & Navas-Castillo, J. (2007). Recombination in the TYLCV complex: a mechanism to increase genetic diversity. Implications for plant resistance development. In H. Czosnek (Ed.), Tomato yellow leaf curl virus disease management, molecular biology, breeding for resistance (pp. 119–138). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Murayama, A., Aragón, L., & Fernández-Northcote, E. N. (2005). Nuevo begomovirus del grupo del nuevo mundo asociado al encrespamiento de la hoja del tomate en la costa del Perú. Fitopatología, 40, 82.

    Google Scholar 

  • Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology, 265, 218–225.

    Article  CAS  PubMed  Google Scholar 

  • Rick, C. M. (1976). Tomato. In N. D. Simmonds (Ed.), The evolution of crop plants (pp. 268–273). London and New York: Longman.

    Google Scholar 

  • Rojas, M. R., Gilbertson, R. J., Rusell, D. R., & Maxwell, D. P. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease, 77, 340–347.

    Article  CAS  Google Scholar 

  • Rojas, M. R., Hagen, C., Lucas, W. J., & Gilbertson, R. L. (2005). Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annual Review of Phytopathology, 43, 361–394.

    Article  CAS  PubMed  Google Scholar 

  • Seal, S. E., Jeger, M. J., & van den Bosch, F. (2006). Begomovirus evolution and disease management. Advances in Virus Research, 67, 297–316.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd, D. N., Martin, D. P., Lefeuvre, P., Monjane, A. L., Owor, B. E., Rybicki, E. P., et al. (2008). A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. Journal of Virological Methods, 149, 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., et al. (2005). Geminiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus taxonomy, VIIIth Report of the International Committee on taxonomy of viruses (pp. 301–326). London: Elsevier/Academic Press.

    Google Scholar 

  • van der Walt, E., Rybicki, E. P., Varsani, A., Polston, J. E., Billharz, R., Donaldson, L., et al. (2009). Rapid host adaptation by extensive recombination. The Journal of General Virology, 90, 734–746.

    Article  PubMed  CAS  Google Scholar 

  • Varma, A., & Malathi, V. G. (2003). Emerging geminivirus problems: a serious threat to crop production. The Annals of Applied Biology, 142, 145–164.

    Article  CAS  Google Scholar 

  • Zhou, X. P., Xie, Y., & Zhang, Z. K. (2001). Molecular characterization of a distinct begomovirus infecting tobacco in Yunnan, China. Archives of Virology, 146, 1599–1606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported through grant GEN2006-27770-C2-2 (Ministerio de Educación y Ciencia, Spain, co-financed by FEDER) in the frame of the ERA-NET Plant Genomics project ERA-PG 040B “RCA-GENOMICS” of the European Commission 6th Framework Programme for research and the Trilateral Cooperation GABI-GENOPLANTE-MEC. B. Márquez contract was financed by this same project. E. Fiallo-Olivé was supported by a MAEC-AECID fellowship from Ministerio de Asuntos Exteriores y de Cooperación, Spain. We thank S. García-Andrés for preliminar analyses, and M. V. Martín, R Tovar, and R. Campos for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Moriones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez-Martín, B., Aragón-Caballero, L., Fiallo-Olivé, E. et al. Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru. Eur J Plant Pathol 129, 1–7 (2011). https://doi.org/10.1007/s10658-010-9699-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9699-5

Keywords

Navigation