European Journal of Plant Pathology

, Volume 129, Issue 1, pp 1–7 | Cite as

Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru

  • Belén Márquez-Martín
  • Liliana Aragón-Caballero
  • Elvira Fiallo-Olivé
  • Jesús Navas-Castillo
  • Enrique Moriones


Begomovirus infection was suspected in tomato plants exhibiting symptoms of curling and deformation of leaves observed in a survey conducted in northern and central Peru. Rolling circle amplification and restriction fragment length polymorphism analyses suggested that a begomovirus was present in symptomatic plants. The full-length sequence of a begomovirus DNA component was determined, comprising 2591 nucleotides. Based on its genome organization, we suggest it corresponds to the DNA-A of a New World begomovirus. Less than 89% nucleotide sequence identity to known begomoviruses was found, indicating that it corresponds to an isolate of a distinct begomovirus species for which the name tomato leaf deformation virus (ToLDeV) is proposed. Different stretches of the genomic component have the highest sequence identity with different viruses compatible with a recombinant origin. Sequence segments shared common ancestors with isolates of either soybean blistering mosaic virus, tomato yellow spot virus, or tomato chino La Paz virus. Partial sequence analysis of begomovirus isolates present in symptomatic tomato samples collected in northern and central Peru suggested widespread occurrence of this new begomovirus. This is the first confirmation of a begomovirus infection in tomatoes in Peru.


Begomovirus Geminiviridae Recombinant Solanum lycopersicum Tomato leaf deformation virus 



This work was supported through grant GEN2006-27770-C2-2 (Ministerio de Educación y Ciencia, Spain, co-financed by FEDER) in the frame of the ERA-NET Plant Genomics project ERA-PG 040B “RCA-GENOMICS” of the European Commission 6th Framework Programme for research and the Trilateral Cooperation GABI-GENOPLANTE-MEC. B. Márquez contract was financed by this same project. E. Fiallo-Olivé was supported by a MAEC-AECID fellowship from Ministerio de Asuntos Exteriores y de Cooperación, Spain. We thank S. García-Andrés for preliminar analyses, and M. V. Martín, R Tovar, and R. Campos for technical assistance.


  1. Argüello-Astorga, G. R., & Ruiz-Medrano, R. (2001). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Archives of Virology, 146, 1465–1485.PubMedCrossRefGoogle Scholar
  2. Duffy, S., & Holmes, E. C. (2007). Multiple introductions of the Old World begomovirus tomato yellow leaf curl virus into the New World. Applied and Environmental Microbiology, 73, 7114–7117.PubMedCrossRefGoogle Scholar
  3. Fargette, D., Konaté, G., Fauquet, C., Muller, E., Peterschmitt, M., & Thresh, J. M. (2006). Molecular ecology and emergence of tropical plant viruses. Annual Review of Phytopathology, 44, 235–260.PubMedCrossRefGoogle Scholar
  4. Fauquet, C. M., & Stanley, J. (2005). Revising the way we conceive and name viruses below the species level: a review of geminivirus taxonomy calls for new standardized isolate descriptors. Archives of Virology, 150, 2151–2179.PubMedCrossRefGoogle Scholar
  5. Fauquet, C., Briddon, R., Brown, J., Moriones, E., Stanley, J., Zerbini, M., et al. (2008). Geminivirus strain demarcation and nomenclature. Archives of Virology, 153, 783–821.PubMedCrossRefGoogle Scholar
  6. Fiallo-Olivé, E., Martínez-Zubiaur, Y., & Rivera-Bustamante, R. F. (2009). Tomato yellow leaf distortion virus, a new bipartite begomovirus infecting tomato in Cuba. Plant Pathology, 58, 785.Google Scholar
  7. Fourment, M., Gibbs, A. J., & Gibbs, M. J. (2008). SWeBLAST: a sliding window web-based BLAST tool for recombinant analysis. Journal of Virological Methods, 152, 98–101.PubMedCrossRefGoogle Scholar
  8. Galvao, R. M., Mariano, A. C., Luz, D. F., Alfenas, P. F., Andrade, E. C., Zerbini, F. M., et al. (2003). A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically. The Journal of General Virology, 84, 715–726.PubMedCrossRefGoogle Scholar
  9. Haible, D., Kober, S., & Jeske, H. (2006). Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. Journal of Virological Methods, 135, 9–16.PubMedCrossRefGoogle Scholar
  10. Idris, A. M., & Brown, J. K. (1998). Sinaloa tomato leaf curl geminivirus: biological and molecular evidence for a new subgroup III virus. Phytopathology, 88, 648–657.PubMedCrossRefGoogle Scholar
  11. Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B., & Nagata, T. (2004). A simple method for cloning the complete begomovirus genome using the bacteriophage Φ29 DNA polymerase. Journal of Virological Methods, 116, 209–211.PubMedCrossRefGoogle Scholar
  12. Jeske, H. (2007). Replication of geminiviruses and the use of rolling circle amplification for their diagnosis. In H. Czosnek (Ed.), Tomato yellow leaf curl virus disease management, molecular biology, breeding for resistance (pp. 141–156). Dordrecht: Springer.CrossRefGoogle Scholar
  13. Jeske, H. (2009). Geminiviruses. Current Topics in Microbiology and Immunology, 331, 185–226.PubMedCrossRefGoogle Scholar
  14. Mansoor, S., Zafar, Y., & Briddon, R. W. (2006). Geminivirus disease complexes: the threat is spreading. Trends in Plant Science, 11, 209–212.PubMedCrossRefGoogle Scholar
  15. Martin, D. P., Van der Walt, E., Posada, D., & Rybicki, E. P. (2005a). The evolutionary value of recombination is constrained by genome modularity. PLoS Genetics, 1, 475–479.CrossRefGoogle Scholar
  16. Martin, D. P., Williamson, C., & Posada, D. (2005b). RDP2: recombination detection and analysis from sequence alignments. Bioinformatics, 21, 260–262.PubMedCrossRefGoogle Scholar
  17. Morales, F. J., & Anderson, P. K. (2001). The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Archives of Virology, 146, 415–441.PubMedCrossRefGoogle Scholar
  18. Moriones, E., & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 71, 123–134.PubMedCrossRefGoogle Scholar
  19. Moriones, E., García-Andrés, S., & Navas-Castillo, J. (2007). Recombination in the TYLCV complex: a mechanism to increase genetic diversity. Implications for plant resistance development. In H. Czosnek (Ed.), Tomato yellow leaf curl virus disease management, molecular biology, breeding for resistance (pp. 119–138). Dordrecht: Springer.CrossRefGoogle Scholar
  20. Murayama, A., Aragón, L., & Fernández-Northcote, E. N. (2005). Nuevo begomovirus del grupo del nuevo mundo asociado al encrespamiento de la hoja del tomate en la costa del Perú. Fitopatología, 40, 82.Google Scholar
  21. Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology, 265, 218–225.PubMedCrossRefGoogle Scholar
  22. Rick, C. M. (1976). Tomato. In N. D. Simmonds (Ed.), The evolution of crop plants (pp. 268–273). London and New York: Longman.Google Scholar
  23. Rojas, M. R., Gilbertson, R. J., Rusell, D. R., & Maxwell, D. P. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease, 77, 340–347.CrossRefGoogle Scholar
  24. Rojas, M. R., Hagen, C., Lucas, W. J., & Gilbertson, R. L. (2005). Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annual Review of Phytopathology, 43, 361–394.PubMedCrossRefGoogle Scholar
  25. Seal, S. E., Jeger, M. J., & van den Bosch, F. (2006). Begomovirus evolution and disease management. Advances in Virus Research, 67, 297–316.PubMedCrossRefGoogle Scholar
  26. Shepherd, D. N., Martin, D. P., Lefeuvre, P., Monjane, A. L., Owor, B. E., Rybicki, E. P., et al. (2008). A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. Journal of Virological Methods, 149, 97–102.PubMedCrossRefGoogle Scholar
  27. Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., et al. (2005). Geminiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus taxonomy, VIIIth Report of the International Committee on taxonomy of viruses (pp. 301–326). London: Elsevier/Academic Press.Google Scholar
  28. van der Walt, E., Rybicki, E. P., Varsani, A., Polston, J. E., Billharz, R., Donaldson, L., et al. (2009). Rapid host adaptation by extensive recombination. The Journal of General Virology, 90, 734–746.PubMedCrossRefGoogle Scholar
  29. Varma, A., & Malathi, V. G. (2003). Emerging geminivirus problems: a serious threat to crop production. The Annals of Applied Biology, 142, 145–164.CrossRefGoogle Scholar
  30. Zhou, X. P., Xie, Y., & Zhang, Z. K. (2001). Molecular characterization of a distinct begomovirus infecting tobacco in Yunnan, China. Archives of Virology, 146, 1599–1606.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Belén Márquez-Martín
    • 1
  • Liliana Aragón-Caballero
    • 2
  • Elvira Fiallo-Olivé
    • 1
    • 3
  • Jesús Navas-Castillo
    • 1
  • Enrique Moriones
    • 1
  1. 1.Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”MálagaSpain
  2. 2.Facultad de AgronomíaUniversidad Nacional Agraria La MolinaLimaPerú
  3. 3.Centro Nacional de Sanidad Agropecuaria (CENSA)La HabanaCuba

Personalised recommendations