European Journal of Plant Pathology

, Volume 129, Issue 1, pp 9–19 | Cite as

The impact of global warming on plant diseases and insect vectors in Sweden

  • Jonas Roos
  • Richard Hopkins
  • Anders Kvarnheden
  • Christina Dixelius


Cold winters and geographic isolation have hitherto protected the Nordic countries from many plant pathogens and insect pests, leading to a comparatively low input of pesticides. The changing climate is projected to lead to a greater rise in temperature in this region, compared to the global mean. In Scandinavia, a milder and more humid climate implies extended growing seasons and possibilities to introduce new crops, but also opportunities for crop pests and pathogens to thrive in the absence of long cold periods. Increased temperatures, changed precipitation patterns and new cultivation practices may lead to a dramatic change in crop health. Examples of diseases and insect pest problems predicted to increase in incidence and severity due to global warming are discussed.


Agricultural crops Climate change Pathogens 



We thank the Swedish Board of Agriculture for data and discussions on diseases and insect pests. This work was supported by the Faculty of Natural Resources and Agricultural Sciences (Swedish University of Agricultural Sciences), and the Foundation in Memory of Oscar and Lili Lamm.


  1. Andersson, B., Johansson, M., & Jönsson, B. (2003). First report of Solanum physalifolium as a host plant for Phytophthora infestans. Plant Disease, 87, 1538.CrossRefGoogle Scholar
  2. Bearchell, S. J., Fraaije, B. A., Shaw, M. W., & Fitt, B. D. L. (2005). Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proceedings of the National Academy of Sciences of the United States of America, 102, 5438–5442.PubMedCrossRefGoogle Scholar
  3. Botermans, M., Verhoeven, J. T. J., Jansen, C. C. C., Roenhorst, J. W., Stijger, C. C. M. M., & Pham, K. T. K. (2009). First report of Tomato yellow leaf curl virus in tomato in the Netherlands. Plant Disease, 93, 1073.CrossRefGoogle Scholar
  4. Chakraborty, S., Luck, J., Hollaway G., Fitzgerald, G. & White, N. (2010). Rust-proofing wheat for a changing climate. Borlaug Global Rust Initiative BGRI. Technical Workshop, 30–31 May 2010, St Petersburg.Google Scholar
  5. Eurostat (2010). European Commission—Agriculture and Rural Development. Retrieved September 5, 2010, from
  6. Evans, N., Baierl, A., Semenov, M. A., Gladders, P., & Fitt, B. D. (2008). Range and severity of a plant disease increased by global warming. Journal of the Royal Society Interface, 5, 525–531.CrossRefGoogle Scholar
  7. Evans, N., Gladders, P., Fitt, B. D. L. & von Tiedemann, A. (2009). Climate change in Europe: altered life cycles and spread of major pathogens in oilseed rape. GCIRC Bulletin No 25.Google Scholar
  8. Evans, N., Butterworth, M. H., Baierl, A., Semenov, M. A., West, J. S., Barnes, A., et al. (2010). The impact of climate change on disease constraints on production of oilseed rape. Food Security, 2, 143–156.CrossRefGoogle Scholar
  9. Fågelfors, H., Wivstad, M., Eckersten, H., Holstein, F., Johansson, S. & Verwijst, T. (2009). Strategic Analysis of Swedish agriculture. Production systems and agricultural landscapes in a time of change. Report from the Department of Crop Production Ecology, 10. (Swedish University of Agricultural Sciences). ISBN 978-91-86197-55-1. Retrieved September 5, 2010, from
  10. Fry, W. E., Goodwin, S. B., & Dyer, A. T. (1993). Historical and recent migration of Phytophthora infestans: chronology, pathways and implications. Plant Disease, 77, 653–661.CrossRefGoogle Scholar
  11. Fry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 9, 384–402.CrossRefGoogle Scholar
  12. Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.PubMedCrossRefGoogle Scholar
  13. Habekuß, A., Riedel, C., Schliephake, E., & Ordon, F. (2009). Breeding for resistance to insect-transmitted viruses in barley—an emerging challenge due to global warming. Journal für Kulturpflanzen, 61, 53–61.Google Scholar
  14. Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56, 167–176.CrossRefGoogle Scholar
  15. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103, 14288–14292.PubMedCrossRefGoogle Scholar
  16. Harrington, R. (1994). Aphid Layer. Antenna, 18, 50–51.Google Scholar
  17. Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., Denholm, C. H., Hullé, M., et al. (2007). Environmental change and the phenology of European aphids. Global Change Biology, 13, 1550–1564.CrossRefGoogle Scholar
  18. Helmfrid, S. (1989). Sveriges Nationalatlas. (Stockholm: Norstedts Förlag). Retrieved from
  19. Hohl, H. L., & Iselin, K. (1984). Strains of Phytophthora infestans from Switzerland with A2 mating type behavior. Transactions of the British Mycological Society, 83, 529–530.CrossRefGoogle Scholar
  20. Hummel, H. E., Deuker, A., Eberhard, D., Glas, M., & Leithold, G. (2008). The western corn rootworm (Diabrotica virgifera virgifera) and its first appearance in Germany 2007. Communications in Agricultural and Applied Biological Sciences, 73, 481–491.PubMedGoogle Scholar
  21. IPCC (2007a). Summary for policy makers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B. & Tignor, M. [Eds.]). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  22. IPCC (2007b). Summary for Policymakers. In: Climate Change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, Pachauri, R.K. and Reisinger, A. [Eds.]). IPCC, Geneva, Switzerland. Retrieved February 20, 2008, from,
  23. Jones, R. A. C. (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113–130.PubMedCrossRefGoogle Scholar
  24. Jonsson, A., Mattsson, L., Wallenhammar, A.-C. & Dixelius, C. (2010). Long-term soil data sets will reveal shifts in populations of soilborne pathogens. In: Climate change and Agricultural production in the Baltic Sea region. Focus on effects, vulnerability and adaptation. Nordic Association of Agricultural Scientists (NJF), ISSN 1653–2015, p. 129.Google Scholar
  25. Karnosky, D. F., Percy, K. E., Xiang, B., Callan, B., Noormets, A., Mankoska, B., et al. (2002). Interacting elevated CO2 and troposperic O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f.sp. tremuloideae). Global Change Biology, 8, 329–338.CrossRefGoogle Scholar
  26. KEMI (2010). Swedish Chemicals Agency. Retrieved from
  27. Kjellström, E., Bärring, L., Gollvik, S., Hansson, U., Jones, C., Samuelsson, P., Rummukainen, M., Ullerstig, A., Willén U. & Wyser, K. (2005). A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Reports Meteorology and Climatology, 108, SMHI, Norrköping, Sweden, 54 pp.Google Scholar
  28. Kühne, T. (2009). Soil-borne viruses affecting cereals—Known for long but still a threat. Virus Research, 141, 174–183.PubMedCrossRefGoogle Scholar
  29. Leakey, A., Ainsworth, E., Bernacchi, C., Rogers, A., Long, S., & Ort, D. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60, 2859–2876.PubMedCrossRefGoogle Scholar
  30. Leijonhufvud, L., Wilson, R., Moberg, A., Söderberg, J., Retsö, D., & Söderlind, U. (2010). Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Climatic Change, 101, 109–141.CrossRefGoogle Scholar
  31. Lennefors, B.-L., Lindsten, K., & Koenig, R. (2000). First record of A and B type Beet necrotic yellow vein virus in sugar beets in Sweden. European Journal of Plant Pathology, 106, 199–201.CrossRefGoogle Scholar
  32. Lind Mikkelsen, B., Rayapuram, C. B. G. & Lyngkjaer, M. (2010). Effects of climate change on plant health. In: Climate change and Agricultural production in the Baltic Sea region. Focus on effects, vulnerability and adaptation. Nordic Association of Agricultural Scientists (NJF). ISSN 1653–2015 p. 94.Google Scholar
  33. Lindblad, M., & Arenö, P. (2002). Temporal and spatial population dynamics of Psammotettix alienus, a vector of wheat dwarf virus. International Journal of Pest Management, 48, 233–238.CrossRefGoogle Scholar
  34. Lindblad, M., & Sigvald, R. (2004). Temporal spread of wheat dwarf virus and mature plant resistance in winter wheat. Crop Protection, 23, 229–234.CrossRefGoogle Scholar
  35. Lindblad, M., & Waern, P. (2002). Correlation of wheat dwarf incidence to winter wheat cultivation practices. Agriculture, Ecosystems and Environment, 92, 115–122.CrossRefGoogle Scholar
  36. Lindsten, K., & Lindsten, B. (1999). Wheat dwarf—an old disease with new outbreaks in Sweden. Journal of Plant Diseases and Protection, 106, 325–332.Google Scholar
  37. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J., & Ort, D. R. (2006). Food for thought: lower-than-expected crop yield simulation with rising CO2 concentrations. Science, 312, 1918–1921.PubMedCrossRefGoogle Scholar
  38. Malvar, R. A., Butrón, A., Alvarez, A., Ordás, B., Soengas, P., Revilla, P., et al. (2004). Evaluation of the European union maize landrace core collection for resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae). Journal of Economical Entomology, 97, 628–634.CrossRefGoogle Scholar
  39. NASA (2010). GISS Surface Temperature Analysis (GISTEMP). Retrieved September 5, 2010, from
  40. Nawaz, S., Scudamore, K. A., & Rainbird, S. C. (1997). Mycotoxins in ingredients of animal feeding stuffs I: Determination of Alternaria mycotoxins in oilseed rape meal and sunflower seed meal. Food Additives and Contaminants, 14, 249–262.PubMedGoogle Scholar
  41. Newman, J. A., Gibson, D. J., Parsons, A. J., & Thornley, J. H. M. (2003). How predictable are aphid population responses to elevated CO2? Journal of Animal Ecology, 72, 556–566.CrossRefGoogle Scholar
  42. Nielsen, S. A., Overgaard Nielsen, B., & Chirico, J. (2010). Monitoring of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) on farms in Sweden during the emergence of the 2008 epidemic of bluetongue. Parasitology Research, 106, 1197–1203.PubMedCrossRefGoogle Scholar
  43. Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239–262.CrossRefGoogle Scholar
  44. Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Saino, P., Rossi, F., Kozyra, J. and Micale, F. (2010). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, (in press).Google Scholar
  45. Park, T. H., Vleeshouwer, V. G. A. A., Jacobsen, E., van der Vossen, E., & Visser, R. G. F. (2009). Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breeding, 128, 109–117.CrossRefGoogle Scholar
  46. Peltonen-Sainio, P., Jauhianen, L., Hakala, K., & Ojanen, H. (2009). Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agricultural and Food Science, 18, 171–190.CrossRefGoogle Scholar
  47. Ramsell, J. N. E., Lemmetty, A., Jonasson, J., Andersson, A., Sigvald, R., & Kvarnheden, A. (2008). Sequence analyses of Wheat dwarf virus isolates from different hosts reveal low genetic diversity within the wheat strain. Plant Pathology, 57, 834–841.CrossRefGoogle Scholar
  48. Ramsell, J. N. E., Boulton, M. I., Martin, D. P., Valkonen, J. P. T., & Kvarnheden, A. (2009). Studies on the host range of the barley strain of Wheat dwarf virus using an agroinfectious clone. Plant Pathology, 58, 1161–1169.CrossRefGoogle Scholar
  49. Randolph, S., & Rogers, D. J. (2010). The arrival, establishment and spread of exotic diseases: patterns and predictions. Nature Reviews Microbiology, 8, 361–371.PubMedCrossRefGoogle Scholar
  50. Rönnberg-Wästljung, A.-C., Samils, B., Tsarouhas, V., & Gullberg, U. (2008). Resistance to Melampsora larici-epitea leaf rust in Salix: analyses of quantitative trait loci. Journal of Applied Genetics, 49, 321–331.PubMedCrossRefGoogle Scholar
  51. Rummukainen, M., Bergström, S., Persson, G., Rodhe, J., & Tjernström, M. (2004). The Swedish regional climate modelling programme, SWECLIM: a review. Ambio, 33, 176–182.PubMedGoogle Scholar
  52. Ruszkowska, M., Lipa, J. J., Walczak, F. & Wójtowicz, A. (2010). Current and future crop protection problems in Poland in a changing climate. In: Climate change and Agricultural production in the Baltic Sea region. Focus on effects, vulnerability and adaptation. Nordic Association of Agricultural Scientists (NJF), ISSN 1653–2015, pp. 67–68.Google Scholar
  53. Rydén, K., Eriksson, B., & Insunza, V. (1986). Rostringar hos potatis orsakade av potatismopptoppvirus (PMTV). Växtskyddsnotiser, 50, 97–102.Google Scholar
  54. Sandgren, M. (1995). Potato mop-top virus (PMTV): distribution in Sweden, development of symptoms during storage and cultivar trials in field and glasshouse. Potato Research, 38, 387–397.CrossRefGoogle Scholar
  55. Santala, J., Samuilova, O., Hannukkala, A., Latvala, S., Kortemaa, H., Beuch, U., et al. (2010). Detection, distribution and control of Potato mop-top virus, a soil-borne virus, in northern Europe. Annals of Applied Biology, 157, 163–178.CrossRefGoogle Scholar
  56. SCB (2010). Statistics Sweden. Retrieved September 5, 2010, from
  57. Shaw, M. W., Bearchell, S. J., Fitt, B. D. L., & Fraaije, B. A. (2008). Long-term relationships between environment and abundance in wheat of Phaeosphaerica nodorum and Mycosphaerella graminicola. New Phytologist, 177, 229–238.PubMedGoogle Scholar
  58. SJV (2007). Swedish Board of Agriculture. En meter i timmen—klimatförändringarnas påverkan på jordbruk i Sverige. (“One meter per hour”). Report no. 16. ISSN 1102–3007.Google Scholar
  59. SJV (2010). Swedish Board of Agriculture. Retrieved from
  60. SMHI (2010). Swedish Meteorological and Hydrological Institute. Retrieved May 19, 2010, from
  61. SOU (2007). Sverige inför klimatförändringarna—hot och möjligheter/. Sweden facing climate change—threats and opportunities. Slutbetänkande av klimat- och sårbarhetsutredningen. Statens offentliga utredningar, SOU 2007:60. Official report from the Swedish Government Retrieved May 14, 2010, from
  62. Soussana, J. F., Graux, A. I., & Tubiello, F. N. (2010). Improving the use of modelling for projections of climate change impacts on crops and pastures. Journal of Experimental Botany, 61, 2217–2228.PubMedCrossRefGoogle Scholar
  63. Staal, J. (2006). Genes and mechanisms in Arabidopsis innate immunity against Leptosphaeria maculans. Dissertation, Swedish University of Agricultural Sciences. Retrieved September 5, 2010, from
  64. Svensson, H. (2010). The effects on climate change in agriculture—an overview. In: Climate change and Agricultural production in the Baltic Sea region. Focus on effects, vulnerability and adaptation. Nordic Association of Agricultural Scientists (NJF), ISSN 1653–2015, pp. 23–24.Google Scholar
  65. Trnka, M., Muska, F., Semerádová, D., Dubrovský, M., Kocmánková, E., & Zalud, Z. (2007). European corn borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate. Ecological Modelling, 207, 61–84.CrossRefGoogle Scholar
  66. Tubiello, F. N., Soussana, J.-F., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences of the United States of America, 104, 19686–19690.PubMedCrossRefGoogle Scholar
  67. Vereijssen, J., Schneider, J. M., & Jaeger, M. J. (2007). Epidemiology of Cercospora leaf spot on sugar beet: Modeling disease dynamics within and between plants. Phytopathology, 97, 1550–1557.PubMedCrossRefGoogle Scholar
  68. Walter, S., Nicholoson, P., & Doohan, F. M. (2009). Action and reaction of host and pathogen during Fusarium head blight disease. New Phytologist, 185, 54–66.PubMedCrossRefGoogle Scholar
  69. Walters, D. R., Havis, N. D., & Oxley, S. J. P. (2008). Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiology Letters, 279, 1–7.PubMedCrossRefGoogle Scholar
  70. Widmark, A.-K., Andersson, B., Cassel-Lundhagen, A., Sandström, M., & Yuen, J. E. (2007). Phytophthora infestans in a single field in southwest Sweden early in spring: symptoms, spatial distribution and genotypic variation. Plant Pathology, 56, 573–779.CrossRefGoogle Scholar
  71. Yamamura, K., & Kiritani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 33, 289–298.Google Scholar
  72. Ziska, L., & Bunce, J. (2007). Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytologist, 175, 607–618.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Jonas Roos
    • 1
  • Richard Hopkins
    • 2
  • Anders Kvarnheden
    • 1
  • Christina Dixelius
    • 1
  1. 1.Department of Plant Biology and Forest GeneticsUppsala BioCenter, SLUUppsalaSweden
  2. 2.Department of Ecology, Agricultural Entomology Division, SLUUppsalaSweden

Personalised recommendations