Skip to main content
Log in

Influence of rice development on the function of bacterial blight resistance genes

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Disease resistance genes most commonly used in breeding programs are single, dominant genes with relative effectiveness that is sometimes influenced by plant developmental stage. Knowing the developmental stages at which a resistance gene is functional is important for disease management. In rice, resistance at the seedling stage is crucial, because wounding during transplanting increases the potential for bacterial blight disease, and not all bacterial blight resistance genes are effective at the seedling stage. Effectiveness of the bacterial blight resistance genes Xa4, xa5, and Xa7, all in a common genetic background, was evaluated at different developmental stages by measuring lesion length and bacterial numbers after inoculation with the bacterial pathogen, Xanthomonas oryzae pv. oryzae. The Xa4 and xa5 genes controlled disease at all growth stages. In contrast, Xa7 was not fully functional in very young seedlings, but was completely effective by 21 days after sowing (das). The effects of plant developmental stage on interactions of the Xa7 gene with X. oryzae pv. oryzae strains carrying different mutant avrXa7 alleles were also tested. If a partial or fully functional avrXa7 allele was present, Xa7 resistance was effective at all growth stages tested after the transplant stage (>21 das).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Avr :

avirulence gene

BB:

bacterial blight

Dai:

days after inoculation

Das:

days after sowing

R gene:

resistance gene

Xoo :

Xanthomonas oryzae pv. oryzae

References

  • Bai, J. (1990). Infection types of rice bacterial blight caused by Xanthomonas campestris pv. oryzae. Dissertation, University of the Philippines, Los Baños.

  • Bai, J., Choi, S., Ponciano, G., Leung, H., & Leach, J. E. (2000). Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Molecular Plant-Microbe Interactions, 13, 1322–1329.

    Article  CAS  PubMed  Google Scholar 

  • Bartos, P., Dyck, L., & Samborski, D. J. (1969). Adult-plant leaf rust resistance in Thatcher and Marquis wheat: a genetic analysis of the host-parasite interaction. Canadian Journal of Botany, 47, 267–269.

    Article  Google Scholar 

  • Campbell, C., & Madden, L. (1990). Introduction to plant disease epidemiology. Wiley: New York.

    Google Scholar 

  • Cao, Y., Ding, X., Cai, M., Zhao, J., Lin, Y., Li, X., et al. (2007). The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics, 177, 523–533.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y., Duan, L., Li, H., Sun, X., Zhao, Y., Xu, C., et al. (2007). Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. oryzae. Theoretical and Applied Genetics, 115, 887–895.

    Article  PubMed  Google Scholar 

  • Century, K. S., Lagman, R. A., Adkisson, M., Morlan, J., Tobias, R., Schwartz, K., et al. (1999). Developmental control of Xa21-mediated disease resistance in rice. Plant Journal, 20(2), 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296.

    Article  Google Scholar 

  • German-Retana, S., Walter, J., & Le Gall, O. (2008). Lettuce mosaic virus: from pathogen diversity to host interactors. Molecular Plant Pathology, 9(2), 127–136.

    Article  PubMed  Google Scholar 

  • Goodman, R. N., & Novacky, A. J. (1994). The hypersensitive reaction in plants to pathogens: A resistance phenomenon. St. Paul: APS.

    Google Scholar 

  • Greenberg, J. T. (1997). Programmed cell death in plant-pathogen interactions. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), 525–545.

    Article  CAS  PubMed  Google Scholar 

  • Guo, A., Reimers, P., & Leach, J. E. (1993). Effect of light on incompatible interactions between Xanthomonas oryzae pv. oryzae and rice. Physiological and Molecular Plant Pathology, 42, 413–425.

    Article  CAS  Google Scholar 

  • Heagle, A. S., & Moore, M. B. (1970). Some effects of moderate adult-plant resistance to crown rust of oats (Avena sativa). Phytopathology, 60, 461–466.

    Article  Google Scholar 

  • Hopkins, C. M., White, F. F., Choi, S., Guo, A., & Leach, J. E. (1992). Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 5, 451–459.

    CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi, A., & McCouch, S. (2004). The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant-Microbe Interactions, 17, 1348–1354.

    Article  Google Scholar 

  • Iyer-Pascuzzi, A., Jiang, H., Huang, L., & McCouch, S. (2008). Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5. Phytopathology, 98, 289–295.

    Article  CAS  PubMed  Google Scholar 

  • Keen, N. T. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics, 24, 447–463.

    Article  CAS  PubMed  Google Scholar 

  • Leach, J. E., Vera Cruz, C. M., Bai, J. F., & Leung, H. (2001). Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology, 39, 187–224.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Sanchez, A., Angeles, E., Singh, S., Domingo, J., Huang, N., et al. (2001). Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics, 159, 757–765.

    CAS  PubMed  Google Scholar 

  • Mazzola, M., Leach, J. E., Nelson, R. J., & White, F. F. (1994). Analysis of the interaction between Xanthomonas oryzae pv. oryzae and the rice cultivars IR24 and IRBB21. Phytopathology, 84, 392–397.

    Article  CAS  Google Scholar 

  • Mew, T. W. (1987). Current status and future prospects of research on bacterial blight of rice. Annual Review of Phytopathology, 25, 359–382.

    Article  Google Scholar 

  • Mew, T. W., Leung, H., Savary, S., Vera Cruz, C. M., & Leach, J. E. (2004). Looking ahead in rice disease research and management. Clinical Reviews in Plant Science, 23, 1–25.

    Article  Google Scholar 

  • Noda, T., & Ohuchi, A. (1989). Study of resistance of rice to Xanthomonas campestris pv. oryzae during the seedling stage. Bulletin Hokuriku National Agricultural Experiment Station, 30, 25–104.

    Google Scholar 

  • Ogawa, K., Yamamoto, K., Khush, G., & Mew, T. W. (1991). Breeding of near isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. oryzae). Japan Journal of Breeding, 41, 523–529.

    Google Scholar 

  • Ponciano, G., Webb, K. M., Bai, J. F., Vera Cruz, C. M., & Leach, J. E. (2004). Molecular characterization of the avrXa7 locus from Xanthomonas oryzae pv. oryzae field isolates. Physiological and Molecular Plant Pathology, 64, 145–153.

    Article  CAS  Google Scholar 

  • Rafiqi, M., Bernoux, M., Ellis, J. G., & Dodds, P. N. (2009). In the trenches of plant pathogen recognition: role of NB-LRR proteins. Sem. Cell & Developmental Biology, 20, 1017–1024.

    Article  CAS  Google Scholar 

  • Sidhu, G., & Khush, G. (1978). Dominance reversal of bacterial leaf blight resistance gene in some rice cultivars. Phytopathology, 68, 461–463.

    Article  Google Scholar 

  • Suwa, T. (1962). Studies on the culture media of Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Annals of the Phytopathological Society of Japan, 27, 165–171.

    Google Scholar 

  • Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H., Han, B., et al. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseduomonas syringae. Plant Cell, 15, 317–330.

    Article  CAS  PubMed  Google Scholar 

  • Van der Plank, J. E. (1963). Plant diseases: Epidemics and control. New York: Academic.

    Google Scholar 

  • Van der Plank, J. E. (1982). Host-pathogen interaction in plant disease. New York: Academic.

    Google Scholar 

  • Vera Cruz, C. M., Bai, J., Oña, I., Leung, H., Nelson, R. J., Mew, T. W., et al. (2000). Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proceedings of the National Academy of Sciences of the United States of America, 97, 13500–13505.

    Article  CAS  PubMed  Google Scholar 

  • Webb, K. M., Oña, I., Bai, J., Garrett, K. A., Mew, T., Vera Cruz, C. M., et al. (2010). A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytologist, 185, 568–576.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, Y., Cao, Y., Xu, C., Li, X., & Wang, S. (2006). Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theoretical and Applied Genetics, 113, 1347–1355.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., & Mew, T. W. (1985). Adult-plant resistance of rice cultivars to bacterial blight. Plant Disease, 69, 896–898.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Tim Todd, Department of Plant Pathology, Kansas State University, who assisted in statistical data analysis. We also thank Florencio Balenson and Flavio Maghirang from the International Rice Research Institute (IRRI) in helping to maintain experiments and data collection. Travel for K. M. Webb to collect data was supported by the Asia Rice Foundation and the James B. Person Fellowship. This research was supported by the Generation Challenge Program, a USAID Linkage Project, and the Colorado State Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Leach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, K.M., Garcia, E., Vera Cruz, C.M. et al. Influence of rice development on the function of bacterial blight resistance genes. Eur J Plant Pathol 128, 399–407 (2010). https://doi.org/10.1007/s10658-010-9668-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9668-z

Keywords

Navigation