Advertisement

European Journal of Plant Pathology

, Volume 129, Issue 2, pp 157–192 | Cite as

Cucurbit downy mildew (Pseudoperonospora cubensis)—biology, ecology, epidemiology, host-pathogen interaction and control

  • Aleš Lebeda
  • Yigal Cohen
Article

Abstract

Cucurbit downy mildew, caused by the oomycete Pseudoperonospora cubensis, is a devastating, worldwide-distributed disease of cucurbit crops in the open field and under cover. This review provides recent data on the taxonomy, biology, ecology, host range, geographic distribution and epidemiology of P. cubensis. Special attention is given to host-pathogen interactions between P. cubensis and its economically-important cucurbit hosts (Cucumis sativus, C. melo, Cucurbita pepo, C. maxima, and Citrullus lanatus); pathogenic variability in P. cubensis at the species, genus, and population levels; and, differentiation of pathotypes and races. Genetics and variability of host resistance and cellular and molecular aspects of such resistance are considered. A focus is given to methods of crop protection, including prevention and agrotechnical aspects, breeding for resistance—classical and transgenic approaches, chemical control and fungicide resistance. Novel technologies in biological and integrated control are also discussed. This review also summarizes the most important topics for future research and international collaboration.

Keywords

Biological control Breeding for resistance Classification Chemical control Cisgenic plants Epidemiology Fungicide resistance Genetics of resistance Geographic distribution Host range Disease cycle Integrated pest management Life cycle Migration Overwintering Pathotypes Races Symptomatology Systematics Transgenic plants 

Notes

Acknowledgements

The authors thank G. J. Holmes (North Carolina, USA) for his valuable critiques of our report.Preparation of this review was supported by grants MSM 6198959215 and QH 71229. Some P. cubensis isolates used in this research are deposited in the Czech National Collection of Microorganisms (http://www.vurv.cz/collections/vurv.exe/) at Palacký University in Olomouc, Department of Botany (http://botany.upol.cz).

References

  1. Ackermann, P. (1990). Výskyt a ochrana proti plísni okurkové v Československu (Occurrence and protection against cucurbit downy mildew in Czechoslovakia). In A. Lebeda (Ed.) Plíseň okurková (Cucurbit downy mildew) (pp. 51–61). Praha, Czechoslovakia: Československá vědecká společnost pro mykologii při ČSAV (Czechoslovak Scientific Society for Mycology by Czechoslovak Academy of Sciences).Google Scholar
  2. Anand, T., Raguchander, T., Karthikeyan, G., Prakasam, V., & Samiyappan, R. (2007). Chemically and biologically mediated systemic resistance in cucumber (Cucumis sativus L.) against Pseudoperonospora cubensis and Erysiphe cichoracearum. Phytopathologia Mediterranea, 46, 259–271.Google Scholar
  3. Angelov, D., Georgiev, P., & Krasteva, L. (2000). Two races of Pseudoperonospora cubensis on cucumbers in Bulgaria. Acta Horticulturae, 510, 81–83.Google Scholar
  4. Anonymous (2006). Pflanzeschutz Nachrichten Bayer, 59, 2–3 (http://www.bayercropscience.com/BCSWeb/ CropProtection.nsf/id/EN1_Journal).
  5. Baider, A., & Cohen, Y. (2003). Synergistic interaction between BABA and Mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31, 399–409.CrossRefGoogle Scholar
  6. Bains, S. S., & Jhooty, J. S. (1978). Relationships between mineral nutrition of muskmelon and development of downy mildew caused by Pseudoperonospora cubensis. Plant and Soil, 49, 85–90.CrossRefGoogle Scholar
  7. Bains, S. S., & Sharma, N. K. (1986). Differential response of certain cucurbits to isolates of Pseudoperonospora cubensis and characteristics of identified races. Phytophylactica, 18, 31–33.Google Scholar
  8. Balass, M., Cohen, Y., & Bar-Joseph, M. (1992). Identification of a constitutive 45 kD soluble protein associated with resistance to downy mildew in muskmelon (Cucumis melo L.) line PI 124111F. Physiological and Molecular Plant Pathology, 41, 387–396.CrossRefGoogle Scholar
  9. Balass, M., Cohen, Y., & Bar-Joseph, M. (1993). Temperature-dependent resistance to downy mildew in muskmelon: structural responses. Physiological and Molecular Plant Pathology, 43, 11–20.CrossRefGoogle Scholar
  10. Bedlan, G. (1989). Erstmaliger Nachweis von Oosporen von Pseudoperonospora cubensis (Berk. et Curt.) Rost. an Gewächshausgurken in Ősterreich. Pflanzenschutzberichte, 3, 119–120.Google Scholar
  11. Benjamin, I., Kenigsbuch, D., Galperin, M., Abrameto, J. A., & Cohen, Y. (2009). Cisgenic melons over expressing glyoxylate-aminotransferase are resistant to downy mildew. European Journal of Plant Pathology, 125, 355–365.CrossRefGoogle Scholar
  12. Bjoern, G. K., & Kampmann, H. H. (2000). Screening field Riesenchäel cucumbers for resistance to downy mildew: management of interplot interference problems. Acta Horticulturae, 510, 77–80.Google Scholar
  13. Bouwmeester, K., van Poppel, P. M. J. A., & Govers, F. (2009). Genome biology cracks enigmas of oomycete plant pathogens. Annual Plant Reviews, 34, 102–133. Oxford, UK: Wiley-Blackwell.Google Scholar
  14. Caten, C. E. (1987). The concept of race in plant pathology. In M. S. Wolfe & C. E. Caten (Eds.), Populations and plant pathogens: Their dynamics and genetics (pp. 21–37). Oxford, UK: Blackwell Scientific Publications.Google Scholar
  15. Choi, Y.-J., & Shin, H.-D. (2008). First record of downy mildews caused by Pseudoperonospora cubensis on bottle gourd in Korea. Plant Pathology, 57, 371.CrossRefGoogle Scholar
  16. Choi, Y.-J., Hong, S.-B., & Shin, H.-D. (2005). A re-consideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycological Research, 109, 841–848.CrossRefPubMedGoogle Scholar
  17. Cohen, Y. (1976). Quantitation of resistance of cucumbers and cantaloups to Pseudoperonospora cubensis. Phytoparasitica, 4, 25–31.CrossRefGoogle Scholar
  18. Cohen, Y. (1977). The combined effects of temperature, leaf wetness, and inoculum concentration on infection of cucumbers with Pseudoperonospora cubensis. Canadian Journal of Botany, 55, 1478–1487.CrossRefGoogle Scholar
  19. Cohen, Y. (1981). Downy mildew of cucurbits. In D. M. Spencer (Ed.), The downy mildews (pp. 341–354). London: Academic.Google Scholar
  20. Cohen, Y. (1992a). Genes and mechanisms of resistance againts fungal pathogens breeding lines of muskmelon. In R. W. Doruchowski, E. Kozik, & K. Niemirowicz-Suczytt (Eds.), Proceedings of Fifth Eucarpia Cucurbitaceae Symposium (pp. 139–141). Poland: Skierniewice.Google Scholar
  21. Cohen, Y. (1992b). Determination of the sensitivity of Pseudoperonospora cubensis to phenylamides. EPPO Bulletin, 22, 318–320.CrossRefGoogle Scholar
  22. Cohen, Y. (2002a). β-aminobutyric acid-induced resistance against plant pathogens. (Feature Article). Plant Disease, 86, 448–457.CrossRefGoogle Scholar
  23. Cohen, Y. (2002b). Populations of Phytophthora infestans in Israel underwent three major genetic changes during 1983–2000. Phytopathology, 92, 300–307.CrossRefPubMedGoogle Scholar
  24. Cohen, Y., & Coffey, M. D. (1986). Systemic fungicides and the control of Oomycetes. Annual Review of Phytopathology, 24, 311–338.CrossRefGoogle Scholar
  25. Cohen, Y., & Eyal, H. (1977). Growth and differentiation of sporangia and sporangiophores of Pseudoperonospora cubensis on cucumber cotyledons under various combinations of light and temperature. Physiological Plant Pathology, 10, 93–103.CrossRefGoogle Scholar
  26. Cohen, Y., & Eyal, H. (1987). Downy mildew-, powdery mildew- and Fusarium wilt-resistant muskmelon reeding line PI-124111F. Phytoparasitica, 15, 187–195.CrossRefGoogle Scholar
  27. Cohen, Y., & Rotem, J. (1971a). Dispersal and viability of sporangia of Pseudoperonospora cubensis. Transactions of British Mycological Society, 57, 67–74.CrossRefGoogle Scholar
  28. Cohen, Y., & Rotem, J. (1971b). Field and growth chamber approach to epidemiology of Pseudoperonospora cubensis on cucumbers. Phytopathology, 61, 736–737.CrossRefGoogle Scholar
  29. Cohen, Y., Perl, M., & Rotem, J. (1971). The effect of darkness and moisture on sporulation of Pseudoperonospora cubensis in cucumbers. Phytopathology, 61, 594–595.CrossRefGoogle Scholar
  30. Cohen, Y., Eyal, H., Hanania, J., & Malik, Z. (1989). Ultrastructure of Pseudoperonospora cubensis in muskmelon genotypes susceptible and resistant to downy mildew. Physiological and Molecular Plant Pathology, 34, 27–40.CrossRefGoogle Scholar
  31. Cohen, Y., Baider, A., & Cohen, B. H. (1995). Dimethomorph activity against oomycete fungal pathogens. Phytopathology, 85, 1500–1506.CrossRefGoogle Scholar
  32. Cohen, Y., Meron, I., Mor, N., & Zuriel, S. (2003). A new pathotype of Pseudoperonospora cubensis causing downy mildew in cucurbits in Israel. Phytoparasitica, 31, 458–466.CrossRefGoogle Scholar
  33. Colucci, S. J. (2008). Host range, fungicide resistance and management of Pseudoperonospora cubensis, causal agent of cucurbit downy mildew. MS Thesis, North Carolina State University, Raleigh, USAGoogle Scholar
  34. Constantinescu, O. (2000). The fine structure of the sporangium in Pseudoperonospora humuli (Chromista, Oomycota, Peronosporales). Cryptogamic Mycology, 21, 93–101.CrossRefGoogle Scholar
  35. Cooke, O. P. R., & Lees, A. K. (2004). Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathology, 53, 692–704.CrossRefGoogle Scholar
  36. Crute, I. R. (1981). The host specificity of peronosporaceous fungi and the genetics of the relationship between host and parasite. In D. M. Spencer (Ed.), The downy mildews (pp. 45–56). London: Academic.Google Scholar
  37. Crute, I. R. (1986). Investigations of gene-for-gene relationships: the need for genetic analyses of both host and parasite. Plant Pathology, 35, 15–17.CrossRefGoogle Scholar
  38. Day, B., & Hausbeck, M. (2009). Epidemiology of downy mildew: a regional and molecular approach. Phytopathology, 99, S172.Google Scholar
  39. de Jong, M., & Van den Ackerveken, G. (2009). Fungal and oomycete biotrophy. Annual Plant Reviews, 34, 2009, 102–133. Oxford, UK: Wiley-Blackwell.Google Scholar
  40. de Waard, M. A., Georgopoulos, S. G., Hollomon, D. W., Ishii, H., Leroux, P., Ragsdale, N. N., et al. (1993). Chemical control of plant diseases: Problems and prospects. Annual Review of Phytopathology, 31, 403–421.CrossRefGoogle Scholar
  41. Dick, M. W. (2001a). The peronosporomycetes. In D. J. McLaughlin, E. G. McLaughlin, & P. A. Lemke (Eds.), The mycota VII Part A: Systematics and evolution (pp. 39–72). Berlin: Springer-Verlag.Google Scholar
  42. Dick, M. W. (2001b). Straminipilous fungi: Systematics of the Peronosporomycetes, including accounts of the marine Straminipilous Protists, the Plasmodiophorids, and similar organisms. Dordrecht: Kluwer Academic Publishers.Google Scholar
  43. Dick, M. W. (2002a). Towards an understanding of the evolution of the downy mildews. In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 1–57). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  44. Dick, M. W. (2002b). Binomials in the peronosporales, sclerosporales and pythiales. In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 225–265). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  45. Dick, M. W. (2002c). The Peronosporomycetes and other flagellate fungi. In D. H. Howard (Ed.), Fungi pathogenic for humans and animals: Second edition, revised and expanded (pp. 17–66). Washington: American Society for Microbiology, Marcel Dekker, Inc.Google Scholar
  46. Doruchowski, R. W., & Lakowska-Ryk, E. (2000). F1 hybrid pickling cucumbers developed for increased yield, earliness and resistance to downy mildew. Acta Horticulturae, 510, 45–46.Google Scholar
  47. Eckardt, N. A. (2004). Aminotransferases confer “Enzymatic resistance” to downy mildew in melon. Plant Cell, 15, 1–4.CrossRefGoogle Scholar
  48. Epinat, C., & Pitrat, M. (1994a). Inheritance of resistance to downy mildew (Pseudoperonospora cubensis) in muskmelon (Cucumis melo). I. Analysis of a 8 × 8 diallel table. Agronomie, 14, 239–248.CrossRefGoogle Scholar
  49. Epinat, C., & Pitrat, M. (1994b). Inheritance of resistance to downy mildew (Pseudoperonospora cubensis) in muskmelon (Cucumis melo). II. Generation means analysis of 5 genitors. Agronomie, 14, 249–257.CrossRefGoogle Scholar
  50. Ezuka, A., & Komada, H. (1974). Varietal difference in resistance of cucumber to downy mildew. Bulletin Tokai-Kinki National Agricultural Experiment Station, 27, 42–45.Google Scholar
  51. Fellner, M., Binarová, P., & Lebeda, A. (1996). Isolation and fusion of Cucumis sativus and Cucumis melo protoplasts. In M. L. Gómez-Guillamón, C. Soria, J. Cuartero, J. A. Torés, & R. Fernández-Muňoz (Eds.), Cucurbits towards 2000. Proceedings of the VIth Eucarpia Meeting on Cucurbit Genetics and Breeding (pp. 202–209). May 28–30, 1996, Malaga, Spain.Google Scholar
  52. Ferriol, M., & Picó, B. (2008). Pumpkin and winter squash. In J. Prohens & F. Nuez (Eds.), Vegetables I. Asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae (pp. 317–349). New York: Springer.Google Scholar
  53. Forsberg, A. S. (1986). Downy mildew-Pseudoperonospora cubensis in Swedish cucumber fields. Växtskyddsnotiser, 50, 17–19.Google Scholar
  54. Gajdová, J., Lebeda, A., & Navrátilová, B. (2004). Protoplast cultures of Cucumis and Cucurbita spp. In A. Lebeda, & H. S. Paris (Eds.) Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding (pp. 441–454). Olomouc, Czech Republic: Palacký University in Olomouc.Google Scholar
  55. Gent, D. H., Mitchell, M. N., & Holmes, G. J. (2009). Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli: Implications for detection and management. Phytopathology, 99, S171.CrossRefGoogle Scholar
  56. Gisi, U. (2002). Chemical control of downy mildews. In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research ((pp, Vol. 1, pp. 119–159). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  57. Gisi, U., & Sierotzki, H. (2008). Fungicide modes of action and resistance in downy mildews. European Journal of Plant Pathology, 122, 157–167.CrossRefGoogle Scholar
  58. Göker, M., Voglmayr, H., Riethmüller, A., Weiß, M., & Oberwinkler, F. (2003). Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Canadian Journal of Botany, 81, 672–683.CrossRefGoogle Scholar
  59. Göker, M., Voglmayr, H., Riethmüller, A., & Oberwinkler, F. (2007). How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genetics and Biology, 44, 105–122.CrossRefPubMedGoogle Scholar
  60. Hardham, A. R. (2007). Cell biology of plant-oomycete interactions. Cellular Microbiology, 9, 31–39.CrossRefPubMedGoogle Scholar
  61. Holliday, P. (2001). A dictionary of plant pathology (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  62. Holmes, G. J., & Ojiambo, P. (2009). Chemical control of cucurbit downy mildew: a summary of field experiments in the U.S. Phytopathology, 99, S171.Google Scholar
  63. Holmes, G. J., & Thomas, C. (2009). The history and re-emergence of cucurbit downy mildew. Phytopathology, 99, S171.Google Scholar
  64. Holmes, G. J., Main, C. E., & Keever, Z. T., III. (2004). Cucurbit downy mildew: a unique pathosystem for disease forecasting. In P. T. N. Spencer-Phillips & M. Jeger (Eds.), Advances in downy mildew research, vol. 2 (pp. 69–80). Dordrecht: Kluwer Academic Publishers.Google Scholar
  65. Holmes, G., Wehner, T., & Thornton, A. (2006). An old enemy re-emerges: downy mildew rears its ugly head on cucumber, impacting growers up and down the Eastern U.S. American Vegetable Grower, February, 14–15.Google Scholar
  66. Holub, E. B. (2008). Natural history of Arabidopsis thaliana and oomycete symbioses. European Journal of Plant Pathology, 122, 91–109.CrossRefGoogle Scholar
  67. Horejsi, T., Staub, J. E., & Thomas, C. (2000). Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica, 115, 105–113.CrossRefGoogle Scholar
  68. Huang, S., et al. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275–1281.CrossRefPubMedGoogle Scholar
  69. Hughes, M. B., & van Halteren, F. (1952). Two biological forms of Pseudoperonospora cubensis. Plant Disease Reporter, 36, 365–367.Google Scholar
  70. Inaba, T., Morinaka, T., & Hamaya, E. (1986). Physiological races of Pseudoperonospora cubensis isolated from cucumber and muskmelon in Japan. Bulletin National Institute of Agro-Environmental Science, 2, 35–43.Google Scholar
  71. Ivanoff, S. C. (1944). Resistance of cantaloupes to downy mildew and the melon aphid. Journal of Heredity, 35, 35–39.Google Scholar
  72. Iwata, Y. (1941). Specialisation in Pseudoperonospora cubensis (Berk. Et Curt.) Rostow. I. Comparative studies on the pathogenicities on the fungi from Cucumis sativus L. and Cucurbita moschata Duch. Annales of Phytopathological Society of Japan, 11, 101–113.Google Scholar
  73. Jamadar, M. M., & Desai, S. A. (1999). Reaction of ridgegourd local cultivars against downy mildew caused by Pseudoperonospora cubensis (Berk. et Curt.) Rostow. Karnataka Journal of Agricultural Sciences, 12, 204–205.Google Scholar
  74. Jeger, M. J., & Pautasso, M. (2008). Comparative epidemiology of zoosporic plant pathogens. European Journal of Plant Pathology, 122, 111–126.CrossRefGoogle Scholar
  75. Kanetis, L., Holmes, G. J., & Ojiambo, P. S. (2010). Survival of Pseudoperonospora cubensis sporangia exposed to solar radiation. Plant Pathology, 59, 313–323.CrossRefGoogle Scholar
  76. Kenigsbuch, D., & Cohen, Y. (1989). Inheritance of resistance to downy mildew in a gynoecious muskmelon. Plant Disease, 73, 994–996.CrossRefGoogle Scholar
  77. Kenigsbuch, D., & Cohen, Y. (1992a). Inheritance of resistance to downy mildew in Cucumis melo PI 124112 and commonality of resistance genes with PI 124111F. Plant Disease, 76, 615–617.CrossRefGoogle Scholar
  78. Kenigsbuch, D., & Cohen, Y. (1992b). Inheritance and allelism of genes for resistance against races 1 and 2 of Sphaerotheca fuliginea in muskmelons. Plant Disease, 76, 626–629.CrossRefGoogle Scholar
  79. Kirkbride, J. H., Jr. (1993). Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Boone: Parkway.Google Scholar
  80. Ko, Y., Chen, C. Y., Liu, C. W., Chen, S. S., Maruthasalam, S., & Lin, C. H. (2008). First report of downy mildew by Pseudoperonospora cubensis on chayote (Sechium edule) in Taiwan. Plant Disease, 92, 1706.CrossRefGoogle Scholar
  81. Korbel, E. (1990). Možnost použití biologické ochrany proti plísni okurkové (Possibility of biological control utilisation against cucurbit downy mildew). In A. Lebeda (Ed.), Plíseň okurková (Cucurbit downy mildew) (pp. 62–64). Praha, Czechoslovakia: Československá vědecká společnost pro mykologii při ČSAV (Czechoslovak Scientific Society for Mycology by Czechoslovak Academy of Sciences).Google Scholar
  82. Kranz, J. (2003). Comparative epidemiology of plant diseases. Berlin: Springer.Google Scholar
  83. Lange, L., Eden, U., & Olson, L. W. (1989a). Zoosporogenesis in Pseudoperonospora cubensis. The causal agent of cucurbit downy mildew. Nordic Journal of Botany, 8, 497–504.CrossRefGoogle Scholar
  84. Lange, L., Eden, U., & Olson, L. W. (1989b). Internal mycelium of Pseudoperonospora cubensis. The causal agent of cucurbit downy mildew. Nordic Journal of Botany, 8, 505–510.CrossRefGoogle Scholar
  85. Lange, L., Eden, U., & Olson, L. W. (1989c). The zoospore of Pseudoperonospora cubensis. The causal agent of cucurbit downy mildew. Nordic Journal of Botany, 8, 511–516.CrossRefGoogle Scholar
  86. Lebeda, A. (1986a). Epidemic occurrence of Pseudoperonospora cubensis in Czechoslovakia. Temperate Downy Mildews Newsletter, 4, 15–17.Google Scholar
  87. Lebeda, A. (1986b). Pseudoperonospora cubensis. In A. Lebeda (Ed.) Metody testování rezistence zelenin vůči rostlinným patogenům (Methods of vegetable resistance screening against pathogens) (pp. 81–85). Olomouc, Czechoslovakia: VHJ Sempra, Research and Breeding Institute for Vegetable Crops.Google Scholar
  88. Lebeda, A. (1990). Biologie a ekologie plísně okurkové (Biology and ecology of cucurbit downy mildew). In A. Lebeda (Ed.) Plíseň okurková (Cucurbit downy mildew) (pp. 13–45). Praha, Czechoslovakia: Československá vědecká společnost pro mykologii při ČSAV (Czechoslovak Scientific Society for Mycology by Czechoslovak Academy of Sciences).Google Scholar
  89. Lebeda, A. (1991). Resistance in muskmelons to Czechoslovak isolates of Pseudoperonospora cubensis from cucumbers. Scientia Horticulturae, 45, 255–260.CrossRefGoogle Scholar
  90. Lebeda, A. (1992a). Susceptibility of accessions of Cucumis sativus to Pseudoperonospora cubensis. Tests of Agrochemicals and Cultivars No. 13 (Annals of Applied Biology, 120 Suppl.), 102–103.Google Scholar
  91. Lebeda, A. (1992b). Screening of wild Cucumis species against downy mildew (Pseudoperonospora cubensis) isolates from cucumbers. Phytoparasitica, 20, 203–210.CrossRefGoogle Scholar
  92. Lebeda, A. (1999). Pseudoperonospora cubensis on Cucumis spp. and Cucurbita spp.–resistance breeding aspects. Acta Horticulturae, 492, 363–370.Google Scholar
  93. Lebeda, A., & Jendrulek, T. (1988). Application of methods of multivariate analysis in comparative epidemiology and research into field resistance. Journal of Plant Diseases and Protection, 95, 495–505.Google Scholar
  94. Lebeda, A., & Reinink, K. (1991). Variation in the early development of Bremia lactucae on lettuce cultivars with different levels of field resistance. Plant Pathology, 40, 232–237.CrossRefGoogle Scholar
  95. Lebeda, A., & Křístková, E. (1992). Differences in resistance to Pseudoperonospora cubensis in Cucurbita pepo. In R. W. Doruchowski, E. Kozik, & K. Niemirowicz-Szczytt (Eds.) Proceedings of Fifth Eucarpia Cucurbitaceae Symposium (pp. 175–179). July 27–31, 1992, Skierniewice, Poland: Research Institute for Vegetable CropsGoogle Scholar
  96. Lebeda, A., & Křístková, E. (1993). Resistance of Cucurbita pepo and Cucurbita moschata varieties to cucurbit downy mildew (Pseudoperonospora cubensis). Plant Varieties and Seeds, 6, 109–114.Google Scholar
  97. Lebeda, A., & Prášil, J. (1994). Susceptibility of Cucumis sativus cultivars to Pseudoperonospora cubensis. Acta Phytopathologica et Entomologica Hungarica, 29, 89–94.Google Scholar
  98. Lebeda, A., & Schwinn, F. J. (1994). The downy mildews—an overview of recent research progress. Journal of Plant Diseases and Protection, 101, 225–254.Google Scholar
  99. Lebeda, A., & Doležal, K. (1995). Peroxidase isozyme polymorphism as a potential marker for detection of field resistance in Cucumis sativus to cucumber downy mildew (Pseudoperonospora cubensis (Berk. et Curt.) Rostov.). Journal of Plant Diseases and Protection, 102, 467–471.Google Scholar
  100. Lebeda, A., & Křístková, E. (2000). Interactions between morphotypes of Cucurbita pepo and obligate biotrophs (Pseudoperonospora cubensis, Erysiphe cichoracearum and Sphaerotheca fuliginea). Acta Horticulturae, 510, 219–225.Google Scholar
  101. Lebeda, A., & Gadasová, V. (2002). Pathogenic variation of Pseudoperonospora cubensis in the Czech Republic and some other european countries. Acta Horticulturae, 588, 137–141.Google Scholar
  102. Lebeda, A., & Widrlechner, M. P. (2003). A set of Cucurbitaceae taxa for differentiation of P. cubensis pathotypes. Journal of Plant Diseases and Protection, 110, 337–349.Google Scholar
  103. Lebeda, A., & Urban, J. (2004a). Disease impact and pathogenicity variation in Czech populations of Pseudoperonospora cubensis. In A. Lebeda, & H. S. Paris (Eds.), Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8 th EUCARPIA Meeting on Cucurbit Genetics and Breeding (pp. 267–273). Olomouc, Czech Republic: Palacký University in Olomouc.Google Scholar
  104. Lebeda, A., & Urban, J. (2004b). Distribution, harmfulness and pathogenic variability of cucurbit downy mildew in the Czech Republic. Acta Fytotechnica et Zootechnica, 7, 170–173.Google Scholar
  105. Lebeda, A., & Widrlechner, M. P. (2004). Response of wild and weedy Cucurbita L. to pathotypes of Pseudoperonospora cubensis (Berk. et Curt.) Rostov. (Cucurbit downy mildew). In P. Spencer-Phillips & M. Jeger (Eds.), Advances in downy mildew research, Vol. 2 (pp. 203–210). Dordrecht: Kluwer Academic Publishers.Google Scholar
  106. Lebeda, A., & Urban, J. (2005). Ochrana okurek a dalších tykvovitých zelenin vůči plísni okurkové (Protection of cucumbers and other cucurbitaceous vegetables to cucurbit downy mildew). In F. Kocourek et al. (Eds.) Metodika pro integrovaný systém ochrany polní zeleniny vůči škodlivým organismům (Methods for integrated system of field vegetables protection to dangerous organisms) (pp. 24–38). Olomouc, Czech Republic: Zelinářská unie Čech a Moravy, Olomouc (Vegetables Grower Union of Bohemia and Moravia).Google Scholar
  107. Lebeda, A., & Urban, J. (2007). Temporal changes in pathogenicity and fungicide resistance in Pseudoperonospora cubensis populations. Acta Horticulturae, 731, 327–336.Google Scholar
  108. Lebeda, A., Křístková, E., & Kubaláková, M. (1996). Interspecific hybridization of Cucumis sativus × Cucumis melo as potential way to transfer resistance to Pseudoperonospora cubensis. In M. L. Gómez-Guillamón, C. Soria, J. Cuartero, J. A. Torés, & R. Fernández-Muňoz (Eds.) Cucurbits towards 2000. Proceedings of the VIth Eucarpia Meeting on Cucurbit Genetics and Breeding (pp. 31–37), May 28–30, 1996, Malaga, Spain.Google Scholar
  109. Lebeda, A., Kubaláková, M., Křístková, E., Navrátilová, B., Doležal, K., Doležel, J., et al. (1999). Morphological and physiological characteristics of plants issued from an interspecific hybridization of Cucumis sativus × Cucumis melo. Acta Horticulturae, 492, 149–155.Google Scholar
  110. Lebeda, A., Luhová, L., Sedlářová, M., & Jančová, D. (2001a). The role of enzymes in plant—fungal pathogens interactions. Journal of Plant Diseases and Protection, 108, 89–111.Google Scholar
  111. Lebeda, A., Pink, D. A. C., & Mieslerová, B. (2001b). Host-parasite specificity and defense variability in the Lactuca spp.-Bremia lactucae pathosystem. Journal of Plant Pathology, 83, 25–35.Google Scholar
  112. Lebeda, A., Pink, D. A. C., & Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 85–118). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  113. Lebeda, A., Štěpánková, J., & Urban, J. (2006a). Plíseň okurky (Pseudoperonospora cubensis)—taxonomie, biologie, ekologie, interakce hostitel-patogen a možnosti ochrany (Cucurbit downy mildew (Pseudoperonospora cubensis)—taxonomy, biology, ecology, host-pathogen interactions and possibilities of protection). In A. Lebeda, J. Mazáková, & V. Táborský (Eds.) Protozoa a Chromista. Taxonomie, biologie a hospodářský význam (Protozoa and Chromista. Taxonomy, biology and economical impact) (pp. 47–78). Praha, Czech Republic: Česká fytopatologická společnost (Czech Phytopathological Society).Google Scholar
  114. Lebeda, A., Widrlechner, M. P., & Urban, J. (2006b). Individual and population aspects of interactions between cucurbits and Pseudoperonospora cubensis: pathotypes and races. In G. J. Holmes (Ed.), Proceedings of Cucurbitaceae 2006 (pp. 453–467). Raleigh: Universal.Google Scholar
  115. Lebeda, A., Štěpánková, J., Kršková, M., & Widrlechner, M.P. (2007a) Resistance in Cucumis melo germplasm to Pseudoperonospora cubensis pathotypes. In A. Lebeda, & P. T. N. Spencer-Phillips (Eds.) Advances in Downy Mildew Research, Vol. 3. Proceedings of The 2nd International Downy Mildews Symposium (pp. 157–167.). Olomouc and Kostelec na Hané, Czech Republic: Palacký University in Olomouc and JOLA, v.o.s.Google Scholar
  116. Lebeda, A., Widrlechner, M. P., Staub, J., Ezura, H., Zalapa, J., & Křístková, E. (2007b). Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita spp., Citrullus spp.), Chapter 8. In R. Singh (Ed.), Genetic resources, chromosome engineering, and crop improvement series, volume 3—vegetable crops (pp. 273–377). Boca Raton: CRC.Google Scholar
  117. Lebeda, A., Petrželová, I., & Maryška, Z. (2008a). Structure and variation in the wild-plant pathosystem: Lactuca serriola-Bremia lactucae. European Journal of Plant Pathology, 122, 127–146.CrossRefGoogle Scholar
  118. Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008b). Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. European Journal of Plant Pathology, 122, 71–89.CrossRefGoogle Scholar
  119. Limpert, E., Clifford, B., Dreiseitl, A., Johnson, R., Müller, K., Roelfs, A., et al. (1994). Systems of designation of pathotypes of plant pathogens. Journal of Phytopathology, 140, 359–362.CrossRefGoogle Scholar
  120. Lindenthal, M., Steiner, U., Dehne, H. W., & Oerke, E. C. (2005). Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology, 95, 233–240.CrossRefPubMedGoogle Scholar
  121. Mahrisi, R. P., & Siradhana, B. S. (1984). On the occurrence of oospores of Pseudoperonospora cubensis in Rajasthan, India. Indian Phytopathology, 37, 323–325.Google Scholar
  122. Mahrisi, R. P., & Siradhana, B. S. (1988). Effect of nutrition on downy mildew disease caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostow. on muskmelon. Annals of Arid Zone, 27, 153–155.Google Scholar
  123. Main, C. E., Keever, T., Holmes, G. V., & Davis, J. M. (2001). Forecasting long-range transport of downy mildew spores and plant disease epidemics. APS net Feature Story April 25 through May 31. http://www.apsnet.org/ online/future/forecast/
  124. Mauch-Mani, B. (2002). Host resistance to downy mildew diseases. In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 59–83). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  125. Medvedeva, N. I., & Medvedev, A. V. (1983). Agronomic and biological assessment of cucumber varieties with potential for breeding for resistance to downy mildew. Trudy po Prikladnoj Botanike, Genetike i Selekcii, 77, 25–28.Google Scholar
  126. Michelmore, R. W. (1981). Sexual and asexual sporulation in the downy mildews. In D. M. Spencer (Ed.), The downy mildews (pp. 165–181). London: Academic.Google Scholar
  127. Michelmore, R., & Wong, J. (2008). Classical and molecular genetics of Bremia lactucae, cause of lettuce downy mildew. European Journal of Plant Pathology, 122, 19–30.CrossRefGoogle Scholar
  128. Mitchell, M. N., Ocamb, C., & Gent, D. (2009). Addressing the relationship between Pseudoperonospora cubensis and P. humuli by multigenic characterization and host specificity. Phytopathology, 99, S87.Google Scholar
  129. Moravec, J., Lebeda, A., & Křístková, E. (2004). History of growing and breeding of cucurbitaceaous vegetables in Czech Lands. In A. Lebeda, & H. S. Paris (Eds.), Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding (pp. 21–38). Olomouc, Czech Republic: Palacký University in Olomouc.Google Scholar
  130. Nusbaum, C. J. (1944). The seasonal spread and development of cucurbit downy mildew in the Atlantic coastal states. Plant Disease, 28, 82–85.Google Scholar
  131. Nusbaum, C. J. (1948). A summary of cucurbit downy mildew reports from Atlantic coastal states in 1947. Plant Disease, 32, 44–48.Google Scholar
  132. Oerke, E. C., Steiner, U., Dehne, H. W., & Lindenthal, M. (2006). Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany, 57, 2121–2132.CrossRefPubMedGoogle Scholar
  133. Ojiambo, P., Kanetis, L., & Holmes, G. (2009). Forecasting long distance movement of Pseudoperonospora cubensis and the Cucurbit ipmPIPE. Phytopathology, 99, S171.Google Scholar
  134. Okada, K., & Furukawa, M. (2008). Occurrence and countermeasure of fungicide-resistant pathogens in vegetable field of Osaka prefecture. Journal of Pesticide Science, 33, 326–329.Google Scholar
  135. Olaya, G., Kuhn, P., Hert, A., Holmes, G., & Colucci, S. (2009). Fungicide resistance in cucurbit downy mildew. Phytopathology, 99, S171.Google Scholar
  136. Ovadia, A., Biton, R., & Cohen, Y. (2000). Induced resistance to downy mildew and Fusarium wilt in cucurbits. In N. Katzir, & H. S. Paris (Eds.) “Proceedings of 7 th EUCARPIA Meeting on Cucurbit Genetics and Breeding”. Acta Horticulture, 510, 55–59.Google Scholar
  137. Palti, J., & Cohen, Y. (1980). Downy mildew of cucurbits (Pseudoperonospora cubensis): The fungus and its hosts, distribution, epidemiology and control. Phytoparasitica, 8, 109–147.CrossRefGoogle Scholar
  138. Paris, H. S. (2008). Summer squash. In J. Prohens & F. Nuez (Eds.), Vegetables I. Asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae (pp. 351–379). New York: Springer.Google Scholar
  139. Perchepied, L., Bardin, M., Dogimont, C., & Pitrat, M. (2005). Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology, 95, 556–565.CrossRefPubMedGoogle Scholar
  140. Perl, M., Cohen, Y., & Rotem, J. (1972). The effect of humidity during darkness on the transfer of assimilates from cucumber leaves to sporangia of Pseudoperonospora cubensis. Physiological Plant Pathology, 2, 113–122.CrossRefGoogle Scholar
  141. Peterson, C. E. (1975). Plant introduction in the improvement of vegetable cultivars. HortScience, 10, 575–579.Google Scholar
  142. Petrov, L., Boogert, K., Sheck, L., Baider, A., Rubin, E., & Cohen, Y. (2000). Resistance to downy mildew, Pseudoperonospora cubensis, in cucumbers. Acta Horticulturae, 510, 203–209.Google Scholar
  143. Pitrat, M. (1990). Gene list for Cucumis melo L. Cucurbit Genetics Cooperative, 13, 58–68.Google Scholar
  144. Pitrat, M. (2008). Melon. In J. Prohens & F. Nuez (Eds.), Vegetables I. Asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae (pp. 283–315). New York: Springer.Google Scholar
  145. Pivovarov, V. F. (1984). Breeding cucumber for disease resistance using different ecological conditions. Selekcia i Semenovodstvo USSR, 10, 20–22 (in Russian).Google Scholar
  146. Pivovarov, V. F., & Kudelich, V. S. (1985). Using the VIR collection in breeding cucumber for downy mildew resistance in the Republic of Cuba. Trudy po Prikladnoj Botanike, Genetike i Selekcii, 92, 97–102.Google Scholar
  147. Portz, D., Koch, E., & Slusarenko, A. J. (2008). Effects of garlic (Allium sativum) juice containing allicin on Phytophthora infestans and downy mildew of cucumber caused by Pseudoperonospora cubensis. European Journal of Plant Pathology, 122, 197–206.CrossRefGoogle Scholar
  148. Ren, Y., et al. (2009). An integrated genetic and cytogenetic map of the cucumber genome. PloS ONE, 4, e5795.CrossRefPubMedGoogle Scholar
  149. Reuveni, M., Eyal, H., & Cohen, Y. (1980). Development of resistance to metalaxyl in Pseudoperonospora cubensis. Plant Disease, 64, 1108–1109.CrossRefGoogle Scholar
  150. Reuveni, R., Shimoni, M., & Karchi, Z. (1990). A rapid assay for monitoring peroxidase-activity in melon as a marker for resistance to Pseudoperonospora cubensis. Journal of Phytopathology, 129, 333–338.CrossRefGoogle Scholar
  151. Riethmüller, A., Voglmayr, A., Göker, M., Weiß, M., & Oberwinkler, F. (2002). Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia, 94, 834–849.CrossRefPubMedGoogle Scholar
  152. Robinson, R. W., & Decker-Walters, D. S. (1997). Cucurbits. Wallingford: CAB International.Google Scholar
  153. Rod, J. (1990). Principy chemické ochrany (Principles of chemical control). In A. Lebeda (Ed.) Plíseň okurková (Cucurbit downy mildew) (pp. 46–50). Praha, Czechoslovakia: Československá vědecká společnost pro mykologii při ČSAV.Google Scholar
  154. Royle, D. J., & Kremheller, H Th. (1981). Downy mildew of the hop. In D. M. Spencer (Ed.), The downy mildews (pp. 395–419). London: Academic.Google Scholar
  155. Rubatzky, V. E., & Yamaguchi, M. (1997). World vegetables. Principles, production and nutritive values (2nd ed.). New York: Chapman & Hall.Google Scholar
  156. Runge, F., & Thines, M. (2009). A potential perennial host for Pseudoperonospora cubensis in temperate regions. European Journal of Plant Pathology, 123, 483–486.CrossRefGoogle Scholar
  157. Salti, M., Wong, M. Y., Sariah, M., & Masdek, H. N. (2010). First report of Pseudoperonospora cubensis causing downy mildew of Trichosanthes cucumerina in Malaysia. Plant Disease, 94, 642.CrossRefGoogle Scholar
  158. Sarris, P.F., Abdelhalim, M., Kitner, M., Skandalis, N., Panopoulos, N.J., Doulis, A.G., & Lebeda, A. (2009). Molecular polymorphism between populations of Pseudoperonospora cubensis from Greece and the Czech Republic and their phytopathological and phylogenetic implications. Plant Pathology (doi:10.1111/j.1365-3059.2009.02093.x)
  159. Savory, E. A., Tian, M., Erhardt, C., Hausbeck, M., Hammerschmidt, R., & Day, B. (2008). An integrative approach to characterizing the cucumber–Pseudoperonospora cubensis interaction. Phytopathology, 98 (June, Supplement), S140.Google Scholar
  160. Shashikumar, K. T., Pitchaimuthu, M., & Rawal, R. D. (2010). Generation mean analysis of resistance to downy mildew in adult muskmelon plants. Euphytica, 173, 121–127.CrossRefGoogle Scholar
  161. Shetty, N. V., Wehner, T. C., Thomas, C. E., Doruchowski, R. W., & Shetty, K. P. W. (2002). Evidence for downy mildew races in cucumber tested in Asia, Europe, and North America. Scientia Horticulturae, 94, 231–239.CrossRefGoogle Scholar
  162. Shtienberg, D., Elad, Y., Bornstein, M., Ziv, G., Grava, A., & Cohen, S. (2010). Polyethylene mulch modifies greenhouse microclimate and reduces infection of Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Phytopathology, 100, 97–104.CrossRefPubMedGoogle Scholar
  163. Singh, P. P., & Sokhi, S. S. (1989). 1st report of occurrence of oospores of Pseudoperonospora cubensis on 2 cucurbitaceous hosts. Current Science, 58, 1330–1331.Google Scholar
  164. Singh, R. D., & Singh, J. P. (1998). Improvement and cultivation: Lagenaria and Luffa. In N. M. Naynar & T. A. More (Eds.), Cucurbits (pp. 199–204). Enfield: Science Publishers.Google Scholar
  165. Sitterly, W. R. (1972). Breeding of disease resistance in cucurbits. Annual Review of Phytopathology, 10, 471–490.CrossRefGoogle Scholar
  166. Skalický, V. (1961). Plíseň okurková–Peronoplasmopara cubensis. In J. Benada, & J. Špaček (Eds.) Zemědělská fytopatologie, díl III-Choroby zeleniny (Agricultural phytopathology, vol. III–diseases of vegetable crops) (pp. 390–393). Praha, Czechoslovakia: Státní zemědělské nakladatelství.Google Scholar
  167. Skalický, V. (1966). Taxonomie der Gattungen der Familie Peronosporaceae. Preslia, 38, 117–129.Google Scholar
  168. Skálová, D., Lebeda, A., & Navrátilová, B. (2004). Embryo and ovule cultures in Cucumis species and their utilization in interspecific hybridization. In A. Lebeda, & H. S. Paris (Eds.), Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding (pp. 415–430). Olomouc, Czech Republic: Palacký University in Olomouc.Google Scholar
  169. Skidmore, D. I., & Ingram, D. S. (1985). Conidial morphology and the specialization of Bremia lactucae Regel (Peronosporaceae) on hosts in the family Compositae. Botanical Journal of the Linnean Society, 91, 503–522.CrossRefGoogle Scholar
  170. Slusarenko, A. J., & Schlaich, N. L. (2003). Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Molecular Plant Pathology, 4, 159–170.CrossRefPubMedGoogle Scholar
  171. Sowell, G., & Corley, W. L. (1974). PI 321005 (Tainan 2), a high quality source of resistance to three cantaloupe diseases. Plant Disease Reporter, 58, 899–902.Google Scholar
  172. Staub, J. E., Robbins, M. D., & Wehner, T. C. (2008). Cucumber. In J. Prohens & F. Nuez (Eds.), Vegetables I. Asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae (pp. 241–282). New York: Springer.Google Scholar
  173. Švábová, L., & Lebeda, A. (2005). In vitro selection for improved plant resistance to toxin-producing pathogens. Journal of Phytopathology, 153, 52–64.CrossRefGoogle Scholar
  174. Tahvonen, R. (1985). Downy mildew of cucurbits found for the first time in Finland. Växtskyddsnotiser, 49, 42–44.Google Scholar
  175. Taler, D., Galperin, M., Benjamin, I., Cohen, Y., & Kenigsbuch, D. (2004). Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell, 16, 172–184.CrossRefPubMedGoogle Scholar
  176. Thakur, R. P., & Mathur, K. (2002). Downy mildews of India. Crop Protection, 21, 333–345.CrossRefGoogle Scholar
  177. Thomas, C. E. (1970). Sporulation of Pseudoperonospora cubensis on watermelon. Plant Disease Reporter, 54, 108–111.Google Scholar
  178. Thomas, C. E. (1982). Resistance to downy mildew in Cucumis melo plant introductions and American cultivars. Plant Disease, 66, 500–502.CrossRefGoogle Scholar
  179. Thomas, C. E. (1986). Downy and powdery mildew resistant muskmelon breeding line MR-1. HortScience, 21, 329.Google Scholar
  180. Thomas, C. E. (1996). Downy mildew. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of cucurbit diseases (pp. 25–27). St. Paul: American Phytopathological Society Press.Google Scholar
  181. Thomas, C. E., Cohen, Y., Jourdain, E. L., & Eyal, H. (1987a). Use of reaction types to identify downy mildew resistance in muskmelons. HortScience, 22, 638–640.Google Scholar
  182. Thomas, C. E., Cohen, Y., Mc Creight, Y. D., Jourdion, E. L., & Cohen, S. (1987b). Inheritance of resistance to downy mildew in Cucumis melo. Plant Disease, 72, 33–35.CrossRefGoogle Scholar
  183. Thomas, C. E., Inaba, T., & Cohen, Y. (1987c). Physiological specialization in Pseudoperonospora cubensis. Phytopathology, 77, 1621–1624.CrossRefGoogle Scholar
  184. Tomlin, C. D. S. (2003). The pesticide manual (thirteenthth ed.). Alton: British Crop Protection Council.Google Scholar
  185. Urban, J., & Lebeda, A. (2004). Differential sensitivity to fungicides in Czech populations of Pseudoperonospora cubensis. In A. Lebeda, & H. S. Paris (Eds.) Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding (pp. 275–280). Olomouc, Czech Republic: Palacký University in Olomouc.Google Scholar
  186. Urban, J., & Lebeda, A. (2006). Fungicide resistance in cucurbit downy mildew—methodological, biological and population aspects. Annals of Applied Biology, 149, 63–75.CrossRefGoogle Scholar
  187. Urban, J., & Lebeda, A. (2007). Variation for fungicide resistance in Czech populations of Pseudoperonospora cubensis. Journal of Phytopathology, 155, 143–151.CrossRefGoogle Scholar
  188. Veselý, D. (1977). Potential biological control of damping-off pathogens in emerging sugar beet by Pythium oligandrum Drechsler. Phytopathologische Zeitschrift, 94, 113–115.CrossRefGoogle Scholar
  189. Voglmayr, H. (2003). Phylogenetic study of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycological Research, 107, 1132–1142.CrossRefPubMedGoogle Scholar
  190. Voglmayr, H. (2008). Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. European Journal of Plant Pathology, 122, 3–18.CrossRefGoogle Scholar
  191. Voglmayr, H., & Greilhuber, J. (1998). Genome size determination in Peronosporales (Oomycota) by Feulgen Image Analysis. Fungal Genetics and Biology, 25, 181–195.CrossRefPubMedGoogle Scholar
  192. Voglmayr, H., Riethmüller, A., Göker, M., Weiß, M., & Oberwinkler, F. (2004). Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildews with pyriform haustoria based on Bayesan analysis of partial LSU rDNA sequence data. Mycological Research, 108, 1011–1024.CrossRefPubMedGoogle Scholar
  193. Walz, A., & Simon, O. (2008). β-aminobutyric acid-induced resistance in cucumber against biotrophic and necrotrophic pathogens. Journal of Phytopathology, 157, 356–361.CrossRefGoogle Scholar
  194. Wang, W., Ben-Daniel, B. H., & Cohen, Y. (2004). Control of plant diseases by extracts of Inula viscosa. Phytopathology, 94, 1042–1047.CrossRefPubMedGoogle Scholar
  195. Wang, H. C., Zhou, M. G., Wang, J. X., Chen, C. J., Li, H. X., & Sun, H. Y. (2009). Biological mode of action of dimethomorph on Pseudoperonospora cubensis and its systemic activity in cucumber. Agricultural Sciences in China, 8, 172–181.CrossRefGoogle Scholar
  196. Waterhouse, G. M., & Brothers, M. P. (1981). The taxonomy of Pseudoperonospora. Mycological Papers, 148, 1–28.Google Scholar
  197. Wehner, T. C. (2008). Watermelon. In J. Prohens & F. Nuez (Eds.), Vegetables I. Asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae (pp. 381–418). New York: Springer.Google Scholar
  198. Wehner, T. C., & Shetty, N. V. (1997). Downy mildew resistance of the cucumber germplasm collection in North Carolina field tests. Crop Science, 37, 1331–1340.CrossRefGoogle Scholar
  199. Winstead, N. N., Aycock, R., & Jenkins, J. M. (1957). Reactions of watermelon plant introductions and varieties to downy mildew in North Carolina. Plant Disease Reporter, 41, 620–622.Google Scholar
  200. Yang, X. T., Li, M., Zhao, Ch, Zhang, Z., & Hou, Y. L. (2007). Early warning model for cucumber downy mildew in unheated greenhouses. New Zealand Journal of Agricultural Research, 50, 1261–1268.CrossRefGoogle Scholar
  201. Yeon, I. K. (2007). Incidence of Pseudoperonospora cubensis on winter grown oriental melon (Cucumis melo) in vinyl houses in Korea. In A. Lebeda, & P. T. N. Spencer-Phillips (Eds.), Advances in Downy Mildew Research, Vol. 3. Proceedings of The 2 nd International Downy Mildews Symposium (pp. 217–222.). Olomouc and Kostelec na Hané, Czech Republic: Palacký University in Olomouc and JOLA, v.o.s.Google Scholar
  202. Yeon, I. K., Shin, Y. S., Do, H. W., Bae, S. G., & Park, S. D. (2002). Occurrence and chemical control of downy mildew (Pseudoperonospora cubensis Rostovzev) infecting oriental melon (Cucumis melo L. var. makuwa Makino) in plastic greenhouse. Korean Journal of Horticultural Science & Technology, 20, 25–28.Google Scholar
  203. Zacha, V., Janýška, A., & Holman, B. (1985). Epifytócia plesne uhorkovej (Pseudoperonospora cubensis (Berk. et Curt.) Rost.) v ČSSR v roku 1984. Sborník ÚVTIZ-Ochrana rostlin, 21, 226.Google Scholar
  204. Zaker, M., & Ommati, F. (1991). Observation of oospores of Pseudoperonospora cubensis on cucumber leaves in Iran. Iran Journal of Plant Pathology, 27, 62–63.Google Scholar
  205. Zhang, Yan-ju, Qin, Zhi-wei, & Zhou, Xiu-yan (2006). Study on the over-wintering of cucumber downy mildew in Heilongjiang province of China. Abstracts, 27th International Horticultural Congress & Exhibition, August 13–19, 2006, COEX (Convention & Exhibition), Seoul, Korea; ISHS and KSHS, S11-P-51, p. 376.Google Scholar
  206. Zhang, X., Chen, Y., Zhang, Y. J., & Zhou, M. G. (2008). Occurrence and molecular characterization of azoxystrobin resistance in cucumber downy mildew in Shandong province in China. Phytoparasitica, 36, 136–143.CrossRefGoogle Scholar
  207. Zhao, C. J., Li, M., Han, X., Zhang, Z., & Wang, Y. (2007). Analysis and monitoring for epidemic system as a basis for cucumber downy mildew warning in greenhouse. Progress of Information Technology in Agriculture, pp. 527–532.Google Scholar
  208. Zhou, X. H., Wan, H. J., Qian, C. T., & Chen, J. F. (2008). Development and characterization of Cucumis sativus-hystrix introgression lines exhibiting resistance to downy mildew. In M. Pitrat (Ed.), Cucurbitaceae 2008. Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae (pp. 353–358). Avignon: NRA.Google Scholar
  209. Zhu, S. S., Liu, P. F., Liu, X. L., Li, J. Q., Yuan, S. K., & Sil, N. G. (2008). Assessing the risk of resistance in Pseudoperonospora cubensis to the fungicide flumorph in vitro. Pest Management Science, 64, 255–261.CrossRefPubMedGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  1. 1.Department of Botany, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
  2. 2.Bar Ilan University, Faculty of Life SciencesRamat GanIsrael

Personalised recommendations